残差静校正的遗传算法

Miao Wu, Shulin Pan, Fan Min
{"title":"残差静校正的遗传算法","authors":"Miao Wu, Shulin Pan, Fan Min","doi":"10.1109/ICKG52313.2021.00069","DOIUrl":null,"url":null,"abstract":"Residual static correction is a necessary step to improve the resolution in the seismic exploration process. It is a challenging task because a large number of parameters need to be adjusted. Some machine learning methods have been proposed to deal with this problem, but the results should be further strengthened. In this paper, we propose the genetic-based residual static correction (GBRS) algorithm with three techniques. First, the original encodings is generated by per-forming floating encoding on the offset of each point. Second, a new encodings is constructed through paired crossover on the original ones. Third, the fitness function is used to select new original encodings to promote the evolution of the population. Experiment data with 50 shots and 50 receivers are generated using a simulation model. Results show that our algorithm usually converges in less 100 iterations to the optimal solution.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genetic Algorithm for Residual Static Correction\",\"authors\":\"Miao Wu, Shulin Pan, Fan Min\",\"doi\":\"10.1109/ICKG52313.2021.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Residual static correction is a necessary step to improve the resolution in the seismic exploration process. It is a challenging task because a large number of parameters need to be adjusted. Some machine learning methods have been proposed to deal with this problem, but the results should be further strengthened. In this paper, we propose the genetic-based residual static correction (GBRS) algorithm with three techniques. First, the original encodings is generated by per-forming floating encoding on the offset of each point. Second, a new encodings is constructed through paired crossover on the original ones. Third, the fitness function is used to select new original encodings to promote the evolution of the population. Experiment data with 50 shots and 50 receivers are generated using a simulation model. Results show that our algorithm usually converges in less 100 iterations to the optimal solution.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在地震勘探过程中,剩余静校正是提高分辨率的必要步骤。这是一项具有挑战性的任务,因为需要调整大量参数。已经提出了一些机器学习方法来处理这个问题,但结果还有待进一步加强。本文提出了一种基于遗传的残差静校正(GBRS)算法。首先,通过对每个点的偏移量进行浮点编码来生成原始编码。其次,在原有编码的基础上进行配对交叉,构造新的编码;第三,利用适应度函数选择新的原始编码,促进种群的进化。利用仿真模型生成了50次射击和50次接收机的实验数据。结果表明,该算法通常在不到100次迭代的情况下收敛到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Algorithm for Residual Static Correction
Residual static correction is a necessary step to improve the resolution in the seismic exploration process. It is a challenging task because a large number of parameters need to be adjusted. Some machine learning methods have been proposed to deal with this problem, but the results should be further strengthened. In this paper, we propose the genetic-based residual static correction (GBRS) algorithm with three techniques. First, the original encodings is generated by per-forming floating encoding on the offset of each point. Second, a new encodings is constructed through paired crossover on the original ones. Third, the fitness function is used to select new original encodings to promote the evolution of the population. Experiment data with 50 shots and 50 receivers are generated using a simulation model. Results show that our algorithm usually converges in less 100 iterations to the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信