关于逼近极小化问题的硬度

C. Lund, M. Yannakakis
{"title":"关于逼近极小化问题的硬度","authors":"C. Lund, M. Yannakakis","doi":"10.1145/167088.167172","DOIUrl":null,"url":null,"abstract":"We prove results indicating that it is hard to compute efficiently good approximate solutions to the Graph Coloring, Set Covering and other related minimization problems. Specifically, there is an c >0 such that Graph Coloring cannot be approximated with ratio n’ unless P=NP. Set Covering cannot be approximated with ratio clog n for any c < 1/4 unless NP is contained in DTIME[nPOIY log ~ ]. Similar results follow for related problems such as Clique Cover, Fractional Chromatic Number, Dominating Set and others.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":"{\"title\":\"On the hardness of approximating minimization problems\",\"authors\":\"C. Lund, M. Yannakakis\",\"doi\":\"10.1145/167088.167172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove results indicating that it is hard to compute efficiently good approximate solutions to the Graph Coloring, Set Covering and other related minimization problems. Specifically, there is an c >0 such that Graph Coloring cannot be approximated with ratio n’ unless P=NP. Set Covering cannot be approximated with ratio clog n for any c < 1/4 unless NP is contained in DTIME[nPOIY log ~ ]. Similar results follow for related problems such as Clique Cover, Fractional Chromatic Number, Dominating Set and others.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"228\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 228

摘要

我们证明了图着色、集覆盖和其他相关的最小化问题很难有效地计算出好的近似解。具体来说,存在一个c >0使得图着色不能用比率n '逼近,除非P=NP。对于任何c < 1/4的情况,除非NP包含在DTIME[nPOIY log ~]中,否则集合覆盖不能用比值clog n来近似。类似的结果也适用于相关问题,如团盖、分数色数、支配集等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the hardness of approximating minimization problems
We prove results indicating that it is hard to compute efficiently good approximate solutions to the Graph Coloring, Set Covering and other related minimization problems. Specifically, there is an c >0 such that Graph Coloring cannot be approximated with ratio n’ unless P=NP. Set Covering cannot be approximated with ratio clog n for any c < 1/4 unless NP is contained in DTIME[nPOIY log ~ ]. Similar results follow for related problems such as Clique Cover, Fractional Chromatic Number, Dominating Set and others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信