{"title":"端到端优化图像压缩的空间通道上下文熵建模","authors":"Chongxi Li, Jixiang Luo, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong","doi":"10.1109/VCIP49819.2020.9301882","DOIUrl":null,"url":null,"abstract":"End-to-end optimized image compression has emerged as a disruptive technique to reduce the spatial redundancies with an improved reconstruction quality. However, existing entropy model for latent representations cannot sufficiently exploit their spatial and channel-wise correlations. In this paper, we propose a novel entropy model based on spatial-channel contexts for end-to-end optimized image compression. The proposed model jointly leverages spatial structural dependencies and channel-wise correlations to improve the probabilistic estimation of latent representations. Instead of complex autoregressive hyperprior network, shallow artificial neural networks (ANNs) incorporating 3-D masks are developed to efficiently realize the entropy model with a guarantee of causality. Experimental results demonstrate that the proposed model achieves competitive rate-distortion performance and reduces model complexity in comparison to recent end-to-end optimized methods for image compression.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial-Channel Context-Based Entropy Modeling for End-to-end Optimized Image Compression\",\"authors\":\"Chongxi Li, Jixiang Luo, Wenrui Dai, Chenglin Li, Junni Zou, H. Xiong\",\"doi\":\"10.1109/VCIP49819.2020.9301882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End-to-end optimized image compression has emerged as a disruptive technique to reduce the spatial redundancies with an improved reconstruction quality. However, existing entropy model for latent representations cannot sufficiently exploit their spatial and channel-wise correlations. In this paper, we propose a novel entropy model based on spatial-channel contexts for end-to-end optimized image compression. The proposed model jointly leverages spatial structural dependencies and channel-wise correlations to improve the probabilistic estimation of latent representations. Instead of complex autoregressive hyperprior network, shallow artificial neural networks (ANNs) incorporating 3-D masks are developed to efficiently realize the entropy model with a guarantee of causality. Experimental results demonstrate that the proposed model achieves competitive rate-distortion performance and reduces model complexity in comparison to recent end-to-end optimized methods for image compression.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spatial-Channel Context-Based Entropy Modeling for End-to-end Optimized Image Compression
End-to-end optimized image compression has emerged as a disruptive technique to reduce the spatial redundancies with an improved reconstruction quality. However, existing entropy model for latent representations cannot sufficiently exploit their spatial and channel-wise correlations. In this paper, we propose a novel entropy model based on spatial-channel contexts for end-to-end optimized image compression. The proposed model jointly leverages spatial structural dependencies and channel-wise correlations to improve the probabilistic estimation of latent representations. Instead of complex autoregressive hyperprior network, shallow artificial neural networks (ANNs) incorporating 3-D masks are developed to efficiently realize the entropy model with a guarantee of causality. Experimental results demonstrate that the proposed model achieves competitive rate-distortion performance and reduces model complexity in comparison to recent end-to-end optimized methods for image compression.