从净负荷数据中恢复太阳能光伏逆变器的功率因数控制设置

Samuel Talkington, S. Grijalva, M. Reno, Joseph A. Azzolini
{"title":"从净负荷数据中恢复太阳能光伏逆变器的功率因数控制设置","authors":"Samuel Talkington, S. Grijalva, M. Reno, Joseph A. Azzolini","doi":"10.1109/NAPS52732.2021.9654671","DOIUrl":null,"url":null,"abstract":"Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recovering Power Factor Control Settings of Solar PV Inverters from Net Load Data\",\"authors\":\"Samuel Talkington, S. Grijalva, M. Reno, Joseph A. Azzolini\",\"doi\":\"10.1109/NAPS52732.2021.9654671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

先进的太阳能光伏逆变器控制设置可能不会报告给公用事业公司,也可能在不通知的情况下进行更改。本文提出了一种确定电表后(BTM)太阳能光伏智能逆变器固定功率因数控制设置的估计方法。采用线性回归方法对历史净负荷高级计量基础设施(AMI)数据进行估计。值得注意的是,对于配电工程师来说,BTM PV功率因数设置可能是未知的或不确定的,并且由于本地负载对测量的影响,无法从历史AMI数据中轻松估计。为了解决这个问题,我们使用一个简单的基于百分位数的方法来过滤测量值。然后利用基于物理的线性灵敏度模型从复功率平面的灵敏度确定固定的功率因数控制设定值。该灵敏度参数表征了隐藏在汇总数据中的控制设置。我们比较了几种损失函数,并在250个基于真实智能电表数据的数据集上进行了实验,验证了模型的正确性。这些数据通过BTM PV的合成准静态时间序列(QSTS)模拟来增强,该模拟模拟了在负载下实际观察到的总体测量值。仿真结果表明,采用滤波方法后,BTM光伏智能逆变器的无功灵敏度可以有效地从净负荷数据中恢复出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering Power Factor Control Settings of Solar PV Inverters from Net Load Data
Advanced solar PV inverter control settings may not be reported to utilities or may be changed without notice. This paper develops an estimation method for determining a fixed power factor control setting of a behind-the-meter (BTM) solar PV smart inverter. The estimation is achieved using linear regression methods with historical net load advanced metering infrastructure (AMI) data. Notably, the BTM PV power factor setting may be unknown or uncertain to a distribution engineer, and cannot be trivially estimated from the historical AMI data due to the influence of the native load on the measurements. To solve this, we use a simple percentile-based approach for filtering the measurements. A physics-based linear sensitivity model is then used to determine the fixed power factor control setting from the sensitivity in the complex power plane. This sensitivity parameter characterizes the control setting hidden in the aggregate data. We compare several loss functions, and verify the models developed by conducting experiments on 250 datasets based on real smart meter data. The data are augmented with synthetic quasi-static-timeseries (QSTS) simulations of BTM PV that simulate utility-observed aggregate measurements at the load. The simulations demonstrate the reactive power sensitivity of a BTM PV smart inverter can be recovered efficiently from the net load data after applying the filtering approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信