L. Raschid, J. Langsam, Tharindu Pieris, Anushka Bandara
{"title":"张量因子监测股票价格的共同运动","authors":"L. Raschid, J. Langsam, Tharindu Pieris, Anushka Bandara","doi":"10.1145/3077240.3077242","DOIUrl":null,"url":null,"abstract":"We identify a set of features that are related to extremes of price changes of individual equities. Our hypothesis is that these extreme features may be used to isolate co-movements of prices for groups of equities, reflecting systematic risk. The equities are classified within industry sectors and we create a three mode tensor to represent the dataset; the dimensions of the three mode tensor correspond to the equity, the industry sector and the day on which the feature occurred. We use a method for non-negative tensor factorization (NOTF) to identify factors or communities that are composed of multiple equities, and / or industry sectors. Our preliminary results indicate that our NOTF approach has the potential to identify such communities of price related features that may experience co-movement across industry sectors and temporal intervals.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tensor Factors to Monitor the Co-Movement of Equity Prices\",\"authors\":\"L. Raschid, J. Langsam, Tharindu Pieris, Anushka Bandara\",\"doi\":\"10.1145/3077240.3077242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify a set of features that are related to extremes of price changes of individual equities. Our hypothesis is that these extreme features may be used to isolate co-movements of prices for groups of equities, reflecting systematic risk. The equities are classified within industry sectors and we create a three mode tensor to represent the dataset; the dimensions of the three mode tensor correspond to the equity, the industry sector and the day on which the feature occurred. We use a method for non-negative tensor factorization (NOTF) to identify factors or communities that are composed of multiple equities, and / or industry sectors. Our preliminary results indicate that our NOTF approach has the potential to identify such communities of price related features that may experience co-movement across industry sectors and temporal intervals.\",\"PeriodicalId\":326424,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077240.3077242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tensor Factors to Monitor the Co-Movement of Equity Prices
We identify a set of features that are related to extremes of price changes of individual equities. Our hypothesis is that these extreme features may be used to isolate co-movements of prices for groups of equities, reflecting systematic risk. The equities are classified within industry sectors and we create a three mode tensor to represent the dataset; the dimensions of the three mode tensor correspond to the equity, the industry sector and the day on which the feature occurred. We use a method for non-negative tensor factorization (NOTF) to identify factors or communities that are composed of multiple equities, and / or industry sectors. Our preliminary results indicate that our NOTF approach has the potential to identify such communities of price related features that may experience co-movement across industry sectors and temporal intervals.