人脸gan的快速逆映射

N. Bayat, Vahid Reza Khazaie, Y. Mohsenzadeh
{"title":"人脸gan的快速逆映射","authors":"N. Bayat, Vahid Reza Khazaie, Y. Mohsenzadeh","doi":"10.1109/ICASSP39728.2021.9413532","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. While many studies have explored various training configurations and architectures for GANs, the problem of inverting the generator of GANs has been inadequately investigated. We train a ResNet architecture to map given faces to latent vectors that can be used to generate faces nearly identical to the target. We use a perceptual loss to embed face details in the recovered latent vector while maintaining visual quality using a pixel loss. The vast majority of studies on latent vector recovery are very slow and perform well only on generated images. We argue that our method can be used to determine a fast mapping between real human faces and latent-space vectors that contain most of the important face style details. At last, we demonstrate the performance of our approach on both real and generated faces.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Inverse Mapping of Face GANs\",\"authors\":\"N. Bayat, Vahid Reza Khazaie, Y. Mohsenzadeh\",\"doi\":\"10.1109/ICASSP39728.2021.9413532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. While many studies have explored various training configurations and architectures for GANs, the problem of inverting the generator of GANs has been inadequately investigated. We train a ResNet architecture to map given faces to latent vectors that can be used to generate faces nearly identical to the target. We use a perceptual loss to embed face details in the recovered latent vector while maintaining visual quality using a pixel loss. The vast majority of studies on latent vector recovery are very slow and perform well only on generated images. We argue that our method can be used to determine a fast mapping between real human faces and latent-space vectors that contain most of the important face style details. At last, we demonstrate the performance of our approach on both real and generated faces.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9413532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9413532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

生成对抗网络(GANs)从随机潜在向量合成真实图像。虽然许多研究已经探索了gan的各种训练配置和架构,但对gan生成器的反向问题的研究还不够充分。我们训练了一个ResNet架构,将给定的人脸映射到潜在向量,这些潜在向量可用于生成与目标几乎相同的人脸。我们使用感知损失在恢复的潜在向量中嵌入人脸细节,同时使用像素损失保持视觉质量。绝大多数关于潜在向量恢复的研究都非常缓慢,并且仅在生成的图像上表现良好。我们认为,我们的方法可以用来确定真实人脸和包含大多数重要面部风格细节的潜在空间向量之间的快速映射。最后,我们展示了我们的方法在真实人脸和生成人脸上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Inverse Mapping of Face GANs
Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. While many studies have explored various training configurations and architectures for GANs, the problem of inverting the generator of GANs has been inadequately investigated. We train a ResNet architecture to map given faces to latent vectors that can be used to generate faces nearly identical to the target. We use a perceptual loss to embed face details in the recovered latent vector while maintaining visual quality using a pixel loss. The vast majority of studies on latent vector recovery are very slow and perform well only on generated images. We argue that our method can be used to determine a fast mapping between real human faces and latent-space vectors that contain most of the important face style details. At last, we demonstrate the performance of our approach on both real and generated faces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信