利用COMSOL多物理场模拟InGaAs/InP SPAD SAGCM结构

Rui Yang
{"title":"利用COMSOL多物理场模拟InGaAs/InP SPAD SAGCM结构","authors":"Rui Yang","doi":"10.1117/12.2664526","DOIUrl":null,"url":null,"abstract":"InGaAs/InP single photon avalanche photodiode (SPAD) is important for quantum communication, and LIDAR applications in the near-infrared (NIR) wavelength range, between 0.9 µm and 1.7 µm. Compared with other optoelectronic devices, SPAD has two main advantages: high quantum efficiency and high detection efficiency. In this study, the design and simulating of a separate absorption, grading, charge, and multiplication (SAGCM) structure InGaAs/InP SPAD were conducted by using COMSOL Multiphysics. The electric-field distribution was studied under the given thickness and dopant concentration of each layer of the SPAD. It was found that the edge pre-breakdown of planar-type SPAD resulted from the intense electric field at the junction bend can be prevent from happening by using gaussian type dopant distribution profile. The punch-through voltage and the breakdown voltage were also focused. The results show that the punch-through voltage and the breakdown voltage was 55 V and 65V respectively. In addition, the electric field nonuniformity of the avalanche area increases greatly after the bias voltage exceeded the punch-through voltage.","PeriodicalId":258680,"journal":{"name":"Earth and Space From Infrared to Terahertz (ESIT 2022)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of SAGCM structure InGaAs/InP SPAD using COMSOL multiphysics\",\"authors\":\"Rui Yang\",\"doi\":\"10.1117/12.2664526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"InGaAs/InP single photon avalanche photodiode (SPAD) is important for quantum communication, and LIDAR applications in the near-infrared (NIR) wavelength range, between 0.9 µm and 1.7 µm. Compared with other optoelectronic devices, SPAD has two main advantages: high quantum efficiency and high detection efficiency. In this study, the design and simulating of a separate absorption, grading, charge, and multiplication (SAGCM) structure InGaAs/InP SPAD were conducted by using COMSOL Multiphysics. The electric-field distribution was studied under the given thickness and dopant concentration of each layer of the SPAD. It was found that the edge pre-breakdown of planar-type SPAD resulted from the intense electric field at the junction bend can be prevent from happening by using gaussian type dopant distribution profile. The punch-through voltage and the breakdown voltage were also focused. The results show that the punch-through voltage and the breakdown voltage was 55 V and 65V respectively. In addition, the electric field nonuniformity of the avalanche area increases greatly after the bias voltage exceeded the punch-through voltage.\",\"PeriodicalId\":258680,\"journal\":{\"name\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space From Infrared to Terahertz (ESIT 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2664526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space From Infrared to Terahertz (ESIT 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2664526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

InGaAs/InP单光子雪崩光电二极管(SPAD)对于量子通信和激光雷达在近红外(NIR)波长范围(0.9µm至1.7µm)中的应用非常重要。与其他光电器件相比,SPAD具有两个主要优点:高量子效率和高探测效率。本研究利用COMSOL Multiphysics对InGaAs/InP SPAD的独立吸收、分级、电荷和倍增(SAGCM)结构进行了设计和模拟。研究了给定SPAD各层厚度和掺杂浓度下的电场分布。研究发现,采用高斯型掺杂剂分布可以有效地防止因交界弯道处强电场引起的平面型SPAD边缘预击穿。对穿透电压和击穿电压也进行了研究。实验结果表明,击穿电压为55 V,击穿电压为65V。此外,当偏置电压超过穿通电压后,雪崩区电场不均匀性大大增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of SAGCM structure InGaAs/InP SPAD using COMSOL multiphysics
InGaAs/InP single photon avalanche photodiode (SPAD) is important for quantum communication, and LIDAR applications in the near-infrared (NIR) wavelength range, between 0.9 µm and 1.7 µm. Compared with other optoelectronic devices, SPAD has two main advantages: high quantum efficiency and high detection efficiency. In this study, the design and simulating of a separate absorption, grading, charge, and multiplication (SAGCM) structure InGaAs/InP SPAD were conducted by using COMSOL Multiphysics. The electric-field distribution was studied under the given thickness and dopant concentration of each layer of the SPAD. It was found that the edge pre-breakdown of planar-type SPAD resulted from the intense electric field at the junction bend can be prevent from happening by using gaussian type dopant distribution profile. The punch-through voltage and the breakdown voltage were also focused. The results show that the punch-through voltage and the breakdown voltage was 55 V and 65V respectively. In addition, the electric field nonuniformity of the avalanche area increases greatly after the bias voltage exceeded the punch-through voltage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信