基于快速探索随机树算法和高阶控制障碍函数的自动驾驶地面车辆安全关键路径规划

Yihe Li, Zhouhua Peng, Lu Liu, H. Wang, Nan Gu, Anqing Wang, Dan Wang
{"title":"基于快速探索随机树算法和高阶控制障碍函数的自动驾驶地面车辆安全关键路径规划","authors":"Yihe Li, Zhouhua Peng, Lu Liu, H. Wang, Nan Gu, Anqing Wang, Dan Wang","doi":"10.1109/CACRE58689.2023.10208636","DOIUrl":null,"url":null,"abstract":"This paper presents a maritime path planning algorithm for autonomous surface vehicles (ASVs). A improved RRT algorithm for generating sample nodes is proposed. The HOCBF-RRT algorithm leverages high order control barrier functions (HOCBFs) to take into account the dynamics of the ASV and produce a path that prioritizes safety. In addition, to complete the path optimization, combined with control Lyapunov functions (CLFs), the expansion to the target point is accelerated and the planning time is reduced. In simulation experiments, it is observed that the HOCBF-RRT algorithm and HOCBF-CLF-RRT algorithm offer improvements over traditional RRT algorithms. Specifically, the HOCBF-RRT algorithm is found to enhance the smoothness of paths, while the HOCBF-CLF-RRT algorithm effectively optimizes the expansion of the random tree towards the target point.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions\",\"authors\":\"Yihe Li, Zhouhua Peng, Lu Liu, H. Wang, Nan Gu, Anqing Wang, Dan Wang\",\"doi\":\"10.1109/CACRE58689.2023.10208636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a maritime path planning algorithm for autonomous surface vehicles (ASVs). A improved RRT algorithm for generating sample nodes is proposed. The HOCBF-RRT algorithm leverages high order control barrier functions (HOCBFs) to take into account the dynamics of the ASV and produce a path that prioritizes safety. In addition, to complete the path optimization, combined with control Lyapunov functions (CLFs), the expansion to the target point is accelerated and the planning time is reduced. In simulation experiments, it is observed that the HOCBF-RRT algorithm and HOCBF-CLF-RRT algorithm offer improvements over traditional RRT algorithms. Specifically, the HOCBF-RRT algorithm is found to enhance the smoothness of paths, while the HOCBF-CLF-RRT algorithm effectively optimizes the expansion of the random tree towards the target point.\",\"PeriodicalId\":447007,\"journal\":{\"name\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE58689.2023.10208636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种自动水面车辆(asv)海上路径规划算法。提出了一种改进的RRT算法,用于生成样本节点。HOCBF-RRT算法利用高阶控制障碍函数(hocbf)来考虑ASV的动态,并产生优先考虑安全的路径。此外,为了完成路径优化,结合控制Lyapunov函数(clf),加速了向目标点的扩展,减少了规划时间。在仿真实验中,HOCBF-RRT算法和HOCBF-CLF-RRT算法比传统的RRT算法有了改进。具体而言,HOCBF-RRT算法增强了路径的平滑性,而HOCBF-CLF-RRT算法有效地优化了随机树向目标点的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions
This paper presents a maritime path planning algorithm for autonomous surface vehicles (ASVs). A improved RRT algorithm for generating sample nodes is proposed. The HOCBF-RRT algorithm leverages high order control barrier functions (HOCBFs) to take into account the dynamics of the ASV and produce a path that prioritizes safety. In addition, to complete the path optimization, combined with control Lyapunov functions (CLFs), the expansion to the target point is accelerated and the planning time is reduced. In simulation experiments, it is observed that the HOCBF-RRT algorithm and HOCBF-CLF-RRT algorithm offer improvements over traditional RRT algorithms. Specifically, the HOCBF-RRT algorithm is found to enhance the smoothness of paths, while the HOCBF-CLF-RRT algorithm effectively optimizes the expansion of the random tree towards the target point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信