语义图像分割中高阶条件随机场的进化段选择

Novian Habibie, Vektor Dewanto, Jogie Chandra, Fariz Ikhwantri, H. Santoso, W. Jatmiko
{"title":"语义图像分割中高阶条件随机场的进化段选择","authors":"Novian Habibie, Vektor Dewanto, Jogie Chandra, Fariz Ikhwantri, H. Santoso, W. Jatmiko","doi":"10.1109/ICACSIS.2015.7415150","DOIUrl":null,"url":null,"abstract":"One promising approach for pixel-wise semantic segmentation is based on higher-order Conditional Random Fields (CRFs). We aim to selectively choose segments for the higher-order CRFs in semantic segmentation. To this end, we formulate the selection as an optimization problem. We propose three optimization criteria in relation to the selected segments, namely: a) averaged goodness, b) coverage area and c) non-overlapped area. Essentially, we desire to have best segments with maximum coverage area and maximum non-overlapped area. We apply two evolutionary optimization algorithms, namely: the genetic algorithm (GA) and the particle swarm optimization (PSO). The goodness of segments is estimated using the Latent Dirichlet Allocation approach. Experiment results show that semantic segmentation with GA-or-PSO-selected segments yields competitive semantic segmentation accuracy in comparison to that of naively using all segments. Moreover, the fewer number of segments used in semantic segmentation speeds up its computation time up to six times faster.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary segment selection for higher-order conditional random fields in semantic image segmentation\",\"authors\":\"Novian Habibie, Vektor Dewanto, Jogie Chandra, Fariz Ikhwantri, H. Santoso, W. Jatmiko\",\"doi\":\"10.1109/ICACSIS.2015.7415150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One promising approach for pixel-wise semantic segmentation is based on higher-order Conditional Random Fields (CRFs). We aim to selectively choose segments for the higher-order CRFs in semantic segmentation. To this end, we formulate the selection as an optimization problem. We propose three optimization criteria in relation to the selected segments, namely: a) averaged goodness, b) coverage area and c) non-overlapped area. Essentially, we desire to have best segments with maximum coverage area and maximum non-overlapped area. We apply two evolutionary optimization algorithms, namely: the genetic algorithm (GA) and the particle swarm optimization (PSO). The goodness of segments is estimated using the Latent Dirichlet Allocation approach. Experiment results show that semantic segmentation with GA-or-PSO-selected segments yields competitive semantic segmentation accuracy in comparison to that of naively using all segments. Moreover, the fewer number of segments used in semantic segmentation speeds up its computation time up to six times faster.\",\"PeriodicalId\":325539,\"journal\":{\"name\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2015.7415150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于高阶条件随机场(CRFs)是一种很有前途的逐像素语义分割方法。我们的目标是在语义分割中选择性地选择高阶crf的段。为此,我们将选择表述为一个优化问题。针对所选片段,我们提出了三个优化标准,即:a)平均优度,b)覆盖面积,c)非重叠面积。从本质上讲,我们希望拥有最大覆盖面积和最大非重叠面积的最佳分段。我们应用了两种进化优化算法,即遗传算法(GA)和粒子群优化算法(PSO)。使用潜狄利克雷分配方法估计片段的优度。实验结果表明,使用ga或pso选择的词段进行语义分割,与单纯使用所有词段进行语义分割相比,具有一定的准确性。此外,语义分割中使用的段数更少,使其计算速度提高了6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary segment selection for higher-order conditional random fields in semantic image segmentation
One promising approach for pixel-wise semantic segmentation is based on higher-order Conditional Random Fields (CRFs). We aim to selectively choose segments for the higher-order CRFs in semantic segmentation. To this end, we formulate the selection as an optimization problem. We propose three optimization criteria in relation to the selected segments, namely: a) averaged goodness, b) coverage area and c) non-overlapped area. Essentially, we desire to have best segments with maximum coverage area and maximum non-overlapped area. We apply two evolutionary optimization algorithms, namely: the genetic algorithm (GA) and the particle swarm optimization (PSO). The goodness of segments is estimated using the Latent Dirichlet Allocation approach. Experiment results show that semantic segmentation with GA-or-PSO-selected segments yields competitive semantic segmentation accuracy in comparison to that of naively using all segments. Moreover, the fewer number of segments used in semantic segmentation speeds up its computation time up to six times faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信