单分子反应网络化学主方程的稀疏辨识

K. K. Kim, Hong Jang, R. B. Gopaluni, Jay H. Lee, R. Braatz
{"title":"单分子反应网络化学主方程的稀疏辨识","authors":"K. K. Kim, Hong Jang, R. B. Gopaluni, Jay H. Lee, R. Braatz","doi":"10.1109/ACC.2014.6859312","DOIUrl":null,"url":null,"abstract":"This paper considers the identification of kinetic parameters associated with the dynamics of closed biochemical reaction networks. These reaction networks are modeled by chemical master equations in which the reactions and the associated concentrations/populations of species are characterized by probability distributions. The vector of unknown kinetic parameters is usually highly sparse. Using this sparsity, a robust statistical estimation algorithm is developed to estimate the kinetic parameters from stochastic experimental data. The algorithm is based on regularized maximum likelihood estimation and it is shown to be decomposable into a two-stage optimization. The first-stage optimization has a closed-form solution and the second-stage optimization is to maximize sparsity in the kinetic parameter vector with a guaranteed data-fitting error. The second-stage optimization can be solved using off-the-shelf algorithms for constrained ℓ1 minimization.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse identification in chemical master equations for monomolecular reaction networks\",\"authors\":\"K. K. Kim, Hong Jang, R. B. Gopaluni, Jay H. Lee, R. Braatz\",\"doi\":\"10.1109/ACC.2014.6859312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the identification of kinetic parameters associated with the dynamics of closed biochemical reaction networks. These reaction networks are modeled by chemical master equations in which the reactions and the associated concentrations/populations of species are characterized by probability distributions. The vector of unknown kinetic parameters is usually highly sparse. Using this sparsity, a robust statistical estimation algorithm is developed to estimate the kinetic parameters from stochastic experimental data. The algorithm is based on regularized maximum likelihood estimation and it is shown to be decomposable into a two-stage optimization. The first-stage optimization has a closed-form solution and the second-stage optimization is to maximize sparsity in the kinetic parameter vector with a guaranteed data-fitting error. The second-stage optimization can be solved using off-the-shelf algorithms for constrained ℓ1 minimization.\",\"PeriodicalId\":369729,\"journal\":{\"name\":\"2014 American Control Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2014.6859312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了与封闭生化反应网络动力学相关的动力学参数的识别。这些反应网络由化学主方程建模,其中反应和相关的物种浓度/种群以概率分布为特征。未知动力学参数的向量通常是高度稀疏的。利用这种稀疏性,开发了一种鲁棒统计估计算法,从随机实验数据中估计动力学参数。该算法基于正则化极大似然估计,可分解为两阶段优化。第一阶段优化具有封闭解,第二阶段优化是在保证数据拟合误差的情况下最大化动力学参数向量的稀疏性。第二阶段的优化可以用现成的算法求解约束最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse identification in chemical master equations for monomolecular reaction networks
This paper considers the identification of kinetic parameters associated with the dynamics of closed biochemical reaction networks. These reaction networks are modeled by chemical master equations in which the reactions and the associated concentrations/populations of species are characterized by probability distributions. The vector of unknown kinetic parameters is usually highly sparse. Using this sparsity, a robust statistical estimation algorithm is developed to estimate the kinetic parameters from stochastic experimental data. The algorithm is based on regularized maximum likelihood estimation and it is shown to be decomposable into a two-stage optimization. The first-stage optimization has a closed-form solution and the second-stage optimization is to maximize sparsity in the kinetic parameter vector with a guaranteed data-fitting error. The second-stage optimization can be solved using off-the-shelf algorithms for constrained ℓ1 minimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信