{"title":"VTWM:一种基于变时间窗的增量数据提取模型","authors":"Weixing Jia, Yang Xu, Jie Liu, Guiling Wang","doi":"10.4108/eai.12-6-2020.166291","DOIUrl":null,"url":null,"abstract":"Continuously extracting and integrating changing data from various heterogeneous systems based on an appropriate data extraction model is the key to data sharing and integration and also the key to building an incremental data warehouse for data analysis. The traditional data capture method based on timestamp changes is plagued with anomalies in the data extraction process, which leads to data extraction failure and affects the efficiency of data extraction. To address the above problems, this paper improves the traditional data capture model based on timestamp increments and proposes VTWM, an incremental data extraction model based on variable time-windows, based on the idea of extracting a small number of duplicate records before removing duplicate values. The model reduces the influence of abnormalities on data extraction, improves the reliability of the traditional data extraction ETL processes, and improves the data extraction efficiency.","PeriodicalId":109199,"journal":{"name":"EAI Endorsed Transactions on Collaborative Computing","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VTWM: An Incremental Data Extraction Model Based on Variable Time-Windows\",\"authors\":\"Weixing Jia, Yang Xu, Jie Liu, Guiling Wang\",\"doi\":\"10.4108/eai.12-6-2020.166291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuously extracting and integrating changing data from various heterogeneous systems based on an appropriate data extraction model is the key to data sharing and integration and also the key to building an incremental data warehouse for data analysis. The traditional data capture method based on timestamp changes is plagued with anomalies in the data extraction process, which leads to data extraction failure and affects the efficiency of data extraction. To address the above problems, this paper improves the traditional data capture model based on timestamp increments and proposes VTWM, an incremental data extraction model based on variable time-windows, based on the idea of extracting a small number of duplicate records before removing duplicate values. The model reduces the influence of abnormalities on data extraction, improves the reliability of the traditional data extraction ETL processes, and improves the data extraction efficiency.\",\"PeriodicalId\":109199,\"journal\":{\"name\":\"EAI Endorsed Transactions on Collaborative Computing\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Collaborative Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.12-6-2020.166291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Collaborative Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.12-6-2020.166291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VTWM: An Incremental Data Extraction Model Based on Variable Time-Windows
Continuously extracting and integrating changing data from various heterogeneous systems based on an appropriate data extraction model is the key to data sharing and integration and also the key to building an incremental data warehouse for data analysis. The traditional data capture method based on timestamp changes is plagued with anomalies in the data extraction process, which leads to data extraction failure and affects the efficiency of data extraction. To address the above problems, this paper improves the traditional data capture model based on timestamp increments and proposes VTWM, an incremental data extraction model based on variable time-windows, based on the idea of extracting a small number of duplicate records before removing duplicate values. The model reduces the influence of abnormalities on data extraction, improves the reliability of the traditional data extraction ETL processes, and improves the data extraction efficiency.