{"title":"基于可扩展扫描链的神经网络模型提取","authors":"Shui Jiang, S. Potluri, Tsung-Yi Ho","doi":"10.23919/DATE56975.2023.10137156","DOIUrl":null,"url":null,"abstract":"Scan chains have greatly improved hardware testability while introducing security breaches for confidential data. Scan-chain attacks have extended their scope from cryptoprocessors to AI edge devices. The recently proposed scan-chain-based neural network (NN) model extraction attack (lCCAD 2021) made it possible to achieve fine-grained extraction and is multiple orders of magnitude more efficient both in queries and accuracy than its coarse-grained mathematical counterparts. However, both query formulation complexity and constraint solver failures increase drastically with network depth/size. We demonstrate a more powerful adversary, who is capable of improving scalability while maintaining accuracy, by relaxing high-fidelity constraints to formulate an approximate-fidelity-based layer-constrained least-squares extraction using random queries. We conduct our extraction attack on neural network inference topologies of different depths and sizes, targeting the MNIST digit recognition task. The results show that our method outperforms the scan-chain attack proposed in ICCAD 2021 by an average increase in the extracted neural network's functional accuracy of ≈ 32% and 2–3 orders of reduction in queries. Furthermore, we demonstrated that our attack is highly effective even in the presence of countermeasures against adversarial samples.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Scan-Chain-Based Extraction of Neural Network Models\",\"authors\":\"Shui Jiang, S. Potluri, Tsung-Yi Ho\",\"doi\":\"10.23919/DATE56975.2023.10137156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scan chains have greatly improved hardware testability while introducing security breaches for confidential data. Scan-chain attacks have extended their scope from cryptoprocessors to AI edge devices. The recently proposed scan-chain-based neural network (NN) model extraction attack (lCCAD 2021) made it possible to achieve fine-grained extraction and is multiple orders of magnitude more efficient both in queries and accuracy than its coarse-grained mathematical counterparts. However, both query formulation complexity and constraint solver failures increase drastically with network depth/size. We demonstrate a more powerful adversary, who is capable of improving scalability while maintaining accuracy, by relaxing high-fidelity constraints to formulate an approximate-fidelity-based layer-constrained least-squares extraction using random queries. We conduct our extraction attack on neural network inference topologies of different depths and sizes, targeting the MNIST digit recognition task. The results show that our method outperforms the scan-chain attack proposed in ICCAD 2021 by an average increase in the extracted neural network's functional accuracy of ≈ 32% and 2–3 orders of reduction in queries. Furthermore, we demonstrated that our attack is highly effective even in the presence of countermeasures against adversarial samples.\",\"PeriodicalId\":340349,\"journal\":{\"name\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE56975.2023.10137156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable Scan-Chain-Based Extraction of Neural Network Models
Scan chains have greatly improved hardware testability while introducing security breaches for confidential data. Scan-chain attacks have extended their scope from cryptoprocessors to AI edge devices. The recently proposed scan-chain-based neural network (NN) model extraction attack (lCCAD 2021) made it possible to achieve fine-grained extraction and is multiple orders of magnitude more efficient both in queries and accuracy than its coarse-grained mathematical counterparts. However, both query formulation complexity and constraint solver failures increase drastically with network depth/size. We demonstrate a more powerful adversary, who is capable of improving scalability while maintaining accuracy, by relaxing high-fidelity constraints to formulate an approximate-fidelity-based layer-constrained least-squares extraction using random queries. We conduct our extraction attack on neural network inference topologies of different depths and sizes, targeting the MNIST digit recognition task. The results show that our method outperforms the scan-chain attack proposed in ICCAD 2021 by an average increase in the extracted neural network's functional accuracy of ≈ 32% and 2–3 orders of reduction in queries. Furthermore, we demonstrated that our attack is highly effective even in the presence of countermeasures against adversarial samples.