关于微分分数的积分

François Boulier, F. Lemaire, G. Regensburger, M. Rosenkranz
{"title":"关于微分分数的积分","authors":"François Boulier, F. Lemaire, G. Regensburger, M. Rosenkranz","doi":"10.1145/2465506.2465934","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a differential algebra algorithm for integrating fractions of differential polynomials. It is not restricted to differential fractions that are the derivatives of other differential fractions. The algorithm leads to new techniques for representing differential fractions, which may help converting differential equations to integral equations (as for example used in parameter estimation).","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the integration of differential fractions\",\"authors\":\"François Boulier, F. Lemaire, G. Regensburger, M. Rosenkranz\",\"doi\":\"10.1145/2465506.2465934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a differential algebra algorithm for integrating fractions of differential polynomials. It is not restricted to differential fractions that are the derivatives of other differential fractions. The algorithm leads to new techniques for representing differential fractions, which may help converting differential equations to integral equations (as for example used in parameter estimation).\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465506.2465934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文给出了微分多项式分式积分的微分代数算法。它并不局限于微分分数是其他微分分数的导数。该算法导致了表示微分分数的新技术,这可能有助于将微分方程转换为积分方程(例如用于参数估计)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the integration of differential fractions
In this paper, we provide a differential algebra algorithm for integrating fractions of differential polynomials. It is not restricted to differential fractions that are the derivatives of other differential fractions. The algorithm leads to new techniques for representing differential fractions, which may help converting differential equations to integral equations (as for example used in parameter estimation).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信