基于新闻评论的多语言视点检测

Bei Shi, Wai Lam, Lidong Bing, Yinqing Xu
{"title":"基于新闻评论的多语言视点检测","authors":"Bei Shi, Wai Lam, Lidong Bing, Yinqing Xu","doi":"10.1109/IALP.2015.7451563","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the task of Multilingual Viewpoint Detection (MVD) on multilingual news reader comments. To tackle the MVD task, we propose a new probabilistic graphical model called VDMC to discover latent common viewpoints from multilingual news reader comments. Our VDMC model can cope with the language gap and detect common multilingual viewpoints. To learn the model parameters, we incorporate bilingual constraints into the variational Expectation-Maximization (EM) method. Experimental results show that our VDMC model can resolve the MVD task effectively and outperform the state-of-the-art method.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"2020 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilingual Viewpoint Detection from news comments\",\"authors\":\"Bei Shi, Wai Lam, Lidong Bing, Yinqing Xu\",\"doi\":\"10.1109/IALP.2015.7451563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the task of Multilingual Viewpoint Detection (MVD) on multilingual news reader comments. To tackle the MVD task, we propose a new probabilistic graphical model called VDMC to discover latent common viewpoints from multilingual news reader comments. Our VDMC model can cope with the language gap and detect common multilingual viewpoints. To learn the model parameters, we incorporate bilingual constraints into the variational Expectation-Maximization (EM) method. Experimental results show that our VDMC model can resolve the MVD task effectively and outperform the state-of-the-art method.\",\"PeriodicalId\":256927,\"journal\":{\"name\":\"2015 International Conference on Asian Language Processing (IALP)\",\"volume\":\"2020 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2015.7451563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多语种新闻读者评论的多语种视点检测问题。为了解决MVD任务,我们提出了一个新的概率图形模型,称为VDMC,从多语言新闻读者评论中发现潜在的共同观点。我们的VDMC模型可以处理语言差异并检测常见的多语言视点。为了学习模型参数,我们将双语约束纳入变分期望最大化(EM)方法中。实验结果表明,我们的VDMC模型可以有效地解决MVD任务,并且优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilingual Viewpoint Detection from news comments
In this paper, we investigate the task of Multilingual Viewpoint Detection (MVD) on multilingual news reader comments. To tackle the MVD task, we propose a new probabilistic graphical model called VDMC to discover latent common viewpoints from multilingual news reader comments. Our VDMC model can cope with the language gap and detect common multilingual viewpoints. To learn the model parameters, we incorporate bilingual constraints into the variational Expectation-Maximization (EM) method. Experimental results show that our VDMC model can resolve the MVD task effectively and outperform the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信