有限大小突发缓冲区的I/O调度部署高性能计算

Benbo Zha, Hong Shen
{"title":"有限大小突发缓冲区的I/O调度部署高性能计算","authors":"Benbo Zha, Hong Shen","doi":"10.1109/PDCAT46702.2019.00021","DOIUrl":null,"url":null,"abstract":"Burst-Buffers is a high throughput, small size intermediate storage system integrated between computing nodes and permanent storage system to mitigate the I/O bottleneck problem in modern High Performance Computing (HPC) platforms. This system, however, is unable to effectively handle variable-intensity I/O bursts resulted by unpredictable concurrent accesses to the shared Parallel File System (PFS). In this paper, we introduce a probabilistic I/O scheduling method that takes into account of the burst-buffer load state and instantaneous I/O load distribution of the system based on the probabilistic model of applications to relieve the I/O congestion when I/O load exceeds the PFS bandwidth caused by dynamic application interference. The proposed scheduling method for limited-size Burst-Buffers deployed HPC platforms makes online decision of probabilistic selection of concurrent I/O requests for going through (to PFS), buffering (to Burst-Buffers) or declination in accordance to both the available I/O bandwidth and the current buffer state in order to maximize system efficiency or minimize application dilation. Extensive experiment results on actual characteristic synthetic data show that our method handles the I/O congestion effectively.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"I/O Scheduling for Limited-Size Burst-Buffers Deployed High Performance Computing\",\"authors\":\"Benbo Zha, Hong Shen\",\"doi\":\"10.1109/PDCAT46702.2019.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burst-Buffers is a high throughput, small size intermediate storage system integrated between computing nodes and permanent storage system to mitigate the I/O bottleneck problem in modern High Performance Computing (HPC) platforms. This system, however, is unable to effectively handle variable-intensity I/O bursts resulted by unpredictable concurrent accesses to the shared Parallel File System (PFS). In this paper, we introduce a probabilistic I/O scheduling method that takes into account of the burst-buffer load state and instantaneous I/O load distribution of the system based on the probabilistic model of applications to relieve the I/O congestion when I/O load exceeds the PFS bandwidth caused by dynamic application interference. The proposed scheduling method for limited-size Burst-Buffers deployed HPC platforms makes online decision of probabilistic selection of concurrent I/O requests for going through (to PFS), buffering (to Burst-Buffers) or declination in accordance to both the available I/O bandwidth and the current buffer state in order to maximize system efficiency or minimize application dilation. Extensive experiment results on actual characteristic synthetic data show that our method handles the I/O congestion effectively.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Burst-Buffers是一种集成在计算节点和永久存储系统之间的高吞吐量、小尺寸中间存储系统,用于缓解现代高性能计算(HPC)平台的I/O瓶颈问题。但是,这个系统无法有效地处理由于对共享并行文件系统(PFS)的不可预测的并发访问而导致的可变强度I/O突发。本文基于应用程序的概率模型,提出了一种考虑系统突发缓冲负载状态和瞬时I/O负载分布的概率I/O调度方法,以缓解I/O负载超过PFS带宽时由于应用程序的动态干扰而引起的I/O拥塞。本文提出的基于有限大小Burst-Buffers部署的HPC平台调度方法,根据可用I/O带宽和当前缓冲区状态,在线概率选择并发I/O请求通过(到PFS)、缓冲(到Burst-Buffers)或拒绝,以最大化系统效率或最小化应用程序扩展。在实际特征合成数据上的大量实验结果表明,该方法可以有效地处理I/O拥塞问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
I/O Scheduling for Limited-Size Burst-Buffers Deployed High Performance Computing
Burst-Buffers is a high throughput, small size intermediate storage system integrated between computing nodes and permanent storage system to mitigate the I/O bottleneck problem in modern High Performance Computing (HPC) platforms. This system, however, is unable to effectively handle variable-intensity I/O bursts resulted by unpredictable concurrent accesses to the shared Parallel File System (PFS). In this paper, we introduce a probabilistic I/O scheduling method that takes into account of the burst-buffer load state and instantaneous I/O load distribution of the system based on the probabilistic model of applications to relieve the I/O congestion when I/O load exceeds the PFS bandwidth caused by dynamic application interference. The proposed scheduling method for limited-size Burst-Buffers deployed HPC platforms makes online decision of probabilistic selection of concurrent I/O requests for going through (to PFS), buffering (to Burst-Buffers) or declination in accordance to both the available I/O bandwidth and the current buffer state in order to maximize system efficiency or minimize application dilation. Extensive experiment results on actual characteristic synthetic data show that our method handles the I/O congestion effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信