{"title":"深度结构学习:超越联结主义方法","authors":"B. Mitchell, John W. Sheppard","doi":"10.1109/ICMLA.2012.34","DOIUrl":null,"url":null,"abstract":"Deep structure learning is a promising new area of work in the field of machine learning. Previous work in this area has shown impressive performance, but all of it has used connectionist models. We hope to demonstrate that the utility of deep architectures is not restricted to connectionist models. Our approach is to use simple, non-connectionist dimensionality reduction techniques in conjunction with a deep architecture to examine more precisely the impact of the deep architecture itself. To do this, we use standard PCA as a baseline and compare it with a deep architecture using PCA. We perform several image classification experiments using the features generated by the two techniques, and we conclude that the deep architecture leads to improved classification performance, supporting the deep structure hypothesis.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Deep Structure Learning: Beyond Connectionist Approaches\",\"authors\":\"B. Mitchell, John W. Sheppard\",\"doi\":\"10.1109/ICMLA.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep structure learning is a promising new area of work in the field of machine learning. Previous work in this area has shown impressive performance, but all of it has used connectionist models. We hope to demonstrate that the utility of deep architectures is not restricted to connectionist models. Our approach is to use simple, non-connectionist dimensionality reduction techniques in conjunction with a deep architecture to examine more precisely the impact of the deep architecture itself. To do this, we use standard PCA as a baseline and compare it with a deep architecture using PCA. We perform several image classification experiments using the features generated by the two techniques, and we conclude that the deep architecture leads to improved classification performance, supporting the deep structure hypothesis.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Structure Learning: Beyond Connectionist Approaches
Deep structure learning is a promising new area of work in the field of machine learning. Previous work in this area has shown impressive performance, but all of it has used connectionist models. We hope to demonstrate that the utility of deep architectures is not restricted to connectionist models. Our approach is to use simple, non-connectionist dimensionality reduction techniques in conjunction with a deep architecture to examine more precisely the impact of the deep architecture itself. To do this, we use standard PCA as a baseline and compare it with a deep architecture using PCA. We perform several image classification experiments using the features generated by the two techniques, and we conclude that the deep architecture leads to improved classification performance, supporting the deep structure hypothesis.