家电智能制造视觉检测系统

T. Liu, Haisong Gu, Dongyan Wang
{"title":"家电智能制造视觉检测系统","authors":"T. Liu, Haisong Gu, Dongyan Wang","doi":"10.1109/IRIS.2017.8250129","DOIUrl":null,"url":null,"abstract":"Home appliance manufacturing involves a lot of human operations due to variety of products and sizes, and lower cost requirements. Applying traditional inspection solutions to home appliances faces three challenging issues: 1)hard to handle different sizes of objects from big refrigerators to small kettles with fixed camera setting; 2)heavy engineering and tuning work for different inspection tasks; 3)high cost of stand-alone inspection system. This paper proposes a camera mounted robot solution with self-learning and edge/cloud visual inspection architecture. Firstly the 4 DoF robot arm with novel controlling strategy uses a single camera to handle variety of objects. For different inspection tasks, a machine learning based approach removes the complicated and tedious works for engineering and parameter tuning. Lastly, an edge/cloud computing framework puts limited tasks on cheap edge devices at manufacturing side and reduces the total cost.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual inspection system for smart manufacture of home appliances\",\"authors\":\"T. Liu, Haisong Gu, Dongyan Wang\",\"doi\":\"10.1109/IRIS.2017.8250129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Home appliance manufacturing involves a lot of human operations due to variety of products and sizes, and lower cost requirements. Applying traditional inspection solutions to home appliances faces three challenging issues: 1)hard to handle different sizes of objects from big refrigerators to small kettles with fixed camera setting; 2)heavy engineering and tuning work for different inspection tasks; 3)high cost of stand-alone inspection system. This paper proposes a camera mounted robot solution with self-learning and edge/cloud visual inspection architecture. Firstly the 4 DoF robot arm with novel controlling strategy uses a single camera to handle variety of objects. For different inspection tasks, a machine learning based approach removes the complicated and tedious works for engineering and parameter tuning. Lastly, an edge/cloud computing framework puts limited tasks on cheap edge devices at manufacturing side and reduces the total cost.\",\"PeriodicalId\":213724,\"journal\":{\"name\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2017.8250129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

家电制造由于产品和尺寸多样,成本要求较低,涉及大量的人工操作。将传统的检测方案应用到家电产品中,面临着三个挑战:1)从大的冰箱到小的相机设置固定的水壶,难以处理不同尺寸的物体;2)针对不同检测任务的繁重工程和调试工作;3)单机检测系统成本高。本文提出了一种基于自学习和边缘/云视觉检测架构的摄像机机器人解决方案。首先,采用新颖控制策略的四自由度机械臂采用单摄像头处理多种目标。对于不同的检测任务,基于机器学习的方法消除了复杂而繁琐的工程和参数调整工作。最后,边缘/云计算框架将有限的任务放在制造端的廉价边缘设备上,并降低了总成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual inspection system for smart manufacture of home appliances
Home appliance manufacturing involves a lot of human operations due to variety of products and sizes, and lower cost requirements. Applying traditional inspection solutions to home appliances faces three challenging issues: 1)hard to handle different sizes of objects from big refrigerators to small kettles with fixed camera setting; 2)heavy engineering and tuning work for different inspection tasks; 3)high cost of stand-alone inspection system. This paper proposes a camera mounted robot solution with self-learning and edge/cloud visual inspection architecture. Firstly the 4 DoF robot arm with novel controlling strategy uses a single camera to handle variety of objects. For different inspection tasks, a machine learning based approach removes the complicated and tedious works for engineering and parameter tuning. Lastly, an edge/cloud computing framework puts limited tasks on cheap edge devices at manufacturing side and reduces the total cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信