基于群粒子优化的qos感知服务选择

Hadjila Fethallah, M. A. Chikh, Merzoug Mohammed, Kameche Zineb
{"title":"基于群粒子优化的qos感知服务选择","authors":"Hadjila Fethallah, M. A. Chikh, Merzoug Mohammed, Kameche Zineb","doi":"10.1109/ICITES.2012.6216594","DOIUrl":null,"url":null,"abstract":"The growing number of web service over the internet urges us to conceive an efficient selection approach, especially for composite requests. In general, we can find a set of services that provide the same functionality (inputs/outputs), but differ in QOS criteria, in this situation we must select the best ones, by applying some optimization algorithm. In this paper, we propose a reactive multi-agent solution, based on swarm particle optimization. The proposed system adopts a set of particle's groups, which explore the space search in order to maximize a single objective function. The obtained results show a high rate of optimality and merit to be continued.","PeriodicalId":137864,"journal":{"name":"2012 International Conference on Information Technology and e-Services","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"QoS-aware service selection based on swarm particle optimization\",\"authors\":\"Hadjila Fethallah, M. A. Chikh, Merzoug Mohammed, Kameche Zineb\",\"doi\":\"10.1109/ICITES.2012.6216594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing number of web service over the internet urges us to conceive an efficient selection approach, especially for composite requests. In general, we can find a set of services that provide the same functionality (inputs/outputs), but differ in QOS criteria, in this situation we must select the best ones, by applying some optimization algorithm. In this paper, we propose a reactive multi-agent solution, based on swarm particle optimization. The proposed system adopts a set of particle's groups, which explore the space search in order to maximize a single objective function. The obtained results show a high rate of optimality and merit to be continued.\",\"PeriodicalId\":137864,\"journal\":{\"name\":\"2012 International Conference on Information Technology and e-Services\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Technology and e-Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITES.2012.6216594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Technology and e-Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITES.2012.6216594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

internet上越来越多的web服务促使我们构思一种有效的选择方法,特别是对于复合请求。一般来说,我们可以找到一组提供相同功能(输入/输出)但QOS标准不同的服务,在这种情况下,我们必须通过应用一些优化算法来选择最好的服务。本文提出了一种基于群粒子优化的反应性多智能体解决方案。该系统采用一组粒子群进行空间搜索,以实现单个目标函数的最大化。所得结果显示出较高的优化率,值得进一步推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoS-aware service selection based on swarm particle optimization
The growing number of web service over the internet urges us to conceive an efficient selection approach, especially for composite requests. In general, we can find a set of services that provide the same functionality (inputs/outputs), but differ in QOS criteria, in this situation we must select the best ones, by applying some optimization algorithm. In this paper, we propose a reactive multi-agent solution, based on swarm particle optimization. The proposed system adopts a set of particle's groups, which explore the space search in order to maximize a single objective function. The obtained results show a high rate of optimality and merit to be continued.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信