计算单变量多项式的聚类紧根

Tateaki Sasaki, Akira Terui
{"title":"计算单变量多项式的聚类紧根","authors":"Tateaki Sasaki, Akira Terui","doi":"10.1145/1577190.1577217","DOIUrl":null,"url":null,"abstract":"Given a univariate polynomial having well-separated clusters of close roots, we give a method of computing close roots in a cluster simultaneously, without computing other roots. We first determine the position and the size of the cluster, as well as the number of close roots contained. Then, we move the origin to a near center of the cluster and perform the scale transformation so that the cluster is enlarged to be of size O(1). These operations transform the polynomial to a very characteristic one. We modify Durand-Kerner's method so as to compute only the close roots in the cluster. The method is very efficient because we can discard most terms of the transformed polynomial. We also give a formula of quite tight error bound. We show high efficiency of our method by empirical experiments.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing clustered close-roots of univariate polynomials\",\"authors\":\"Tateaki Sasaki, Akira Terui\",\"doi\":\"10.1145/1577190.1577217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a univariate polynomial having well-separated clusters of close roots, we give a method of computing close roots in a cluster simultaneously, without computing other roots. We first determine the position and the size of the cluster, as well as the number of close roots contained. Then, we move the origin to a near center of the cluster and perform the scale transformation so that the cluster is enlarged to be of size O(1). These operations transform the polynomial to a very characteristic one. We modify Durand-Kerner's method so as to compute only the close roots in the cluster. The method is very efficient because we can discard most terms of the transformed polynomial. We also give a formula of quite tight error bound. We show high efficiency of our method by empirical experiments.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给定一个单变量多项式,它具有分离良好的紧密根簇,给出了一种同时计算簇中的紧密根而不计算其他根的方法。我们首先确定簇的位置和大小,以及包含的紧密根的数量。然后,我们将原点移动到集群的近中心,并进行尺度变换,使集群的大小扩大到O(1)。这些运算将多项式转化为一个非常有特征的多项式。我们修改了Durand-Kerner的方法,使其只计算簇中的密根。这种方法非常有效,因为我们可以去掉变换后的多项式的大部分项。我们还给出了一个相当严格的误差界公式。通过实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing clustered close-roots of univariate polynomials
Given a univariate polynomial having well-separated clusters of close roots, we give a method of computing close roots in a cluster simultaneously, without computing other roots. We first determine the position and the size of the cluster, as well as the number of close roots contained. Then, we move the origin to a near center of the cluster and perform the scale transformation so that the cluster is enlarged to be of size O(1). These operations transform the polynomial to a very characteristic one. We modify Durand-Kerner's method so as to compute only the close roots in the cluster. The method is very efficient because we can discard most terms of the transformed polynomial. We also give a formula of quite tight error bound. We show high efficiency of our method by empirical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信