一类新型参数不确定超混沌系统的分数阶自适应同步

Longge Zhang
{"title":"一类新型参数不确定超混沌系统的分数阶自适应同步","authors":"Longge Zhang","doi":"10.1109/IWCFTA.2009.20","DOIUrl":null,"url":null,"abstract":"This paper investigates the fractional order synchronization of a new hyperchaotic system. Based on the Lyapunov stability theorem, a new type of Lyapunov function is designed to assure the stability of the closed system, and a large number of synchronization methods can received through the different selected fractional order. The feasibility and effectiveness of the proposed hyperchaotic system’s synchronization scheme are verified via numerical simulations.","PeriodicalId":279256,"journal":{"name":"2009 International Workshop on Chaos-Fractals Theories and Applications","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Order Adaptive Synchronization of a New Hyperchaotic System with an Uncertain Parameter\",\"authors\":\"Longge Zhang\",\"doi\":\"10.1109/IWCFTA.2009.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the fractional order synchronization of a new hyperchaotic system. Based on the Lyapunov stability theorem, a new type of Lyapunov function is designed to assure the stability of the closed system, and a large number of synchronization methods can received through the different selected fractional order. The feasibility and effectiveness of the proposed hyperchaotic system’s synchronization scheme are verified via numerical simulations.\",\"PeriodicalId\":279256,\"journal\":{\"name\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Chaos-Fractals Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2009.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Chaos-Fractals Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类新型超混沌系统的分数阶同步问题。基于Lyapunov稳定性定理,设计了一种新型的Lyapunov函数来保证封闭系统的稳定性,并通过选择不同的分数阶来接收大量的同步方法。通过数值仿真验证了所提出的超混沌系统同步方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Order Adaptive Synchronization of a New Hyperchaotic System with an Uncertain Parameter
This paper investigates the fractional order synchronization of a new hyperchaotic system. Based on the Lyapunov stability theorem, a new type of Lyapunov function is designed to assure the stability of the closed system, and a large number of synchronization methods can received through the different selected fractional order. The feasibility and effectiveness of the proposed hyperchaotic system’s synchronization scheme are verified via numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信