结合高斯马尔可夫随机场和离散小波变换的内镜图像分类

M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba
{"title":"结合高斯马尔可夫随机场和离散小波变换的内镜图像分类","authors":"M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba","doi":"10.1109/ICDSP.2009.5201226","DOIUrl":null,"url":null,"abstract":"In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Combining Gaussian Markov random fields with the discrete-wavelet transform for endoscopic image classification\",\"authors\":\"M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba\",\"doi\":\"10.1109/ICDSP.2009.5201226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在这项工作中,我们提出了一种基于凹坑模式分类方案的内窥镜图像自动分类方法。使用锥体离散小波变换将结肠镜检查过程中拍摄的图像变换到小波域。然后,利用高斯马尔可夫随机场从得到的小波系数中提取特征。最后,使用k-NN分类器和贝叶斯分类器将这些特征用于分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Gaussian Markov random fields with the discrete-wavelet transform for endoscopic image classification
In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信