M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba
{"title":"结合高斯马尔可夫随机场和离散小波变换的内镜图像分类","authors":"M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba","doi":"10.1109/ICDSP.2009.5201226","DOIUrl":null,"url":null,"abstract":"In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Combining Gaussian Markov random fields with the discrete-wavelet transform for endoscopic image classification\",\"authors\":\"M. Häfner, A. Gangl, M. Liedlgruber, A. Uhl, A. Vécsei, F. Wrba\",\"doi\":\"10.1109/ICDSP.2009.5201226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Gaussian Markov random fields with the discrete-wavelet transform for endoscopic image classification
In this work we present a method for automated classification of endoscopic images according to the pit pattern classification scheme. Images taken during colonoscopy are transformed to the wavelet domain using the pyramidal discrete wavelet transform. Then, Gaussian Markov random fields are used to extract features from the resulting wavelet coefficients. Finally, these features are used for a classification using the k-NN classifier and the Bayes classifier.