$\mathbb{R}^2$上的河度量的一些度量和拓扑性质

N. Okičić, A. Rekic-Vukovic
{"title":"$\\mathbb{R}^2$上的河度量的一些度量和拓扑性质","authors":"N. Okičić, A. Rekic-Vukovic","doi":"10.37418/amsj.12.2.8","DOIUrl":null,"url":null,"abstract":"In this paper we consider some metrical and topological properties of the river metric $d^*$ in the plane $\\mathbb{R}^2^2$. We give the form of the metric segment and the set of all points that are equidistant from two points in $(\\rR^2,d^*)$. We also give the characterization of a compact sets in this space.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOME METRICAL AND TOPOLOGICAL PROPERTIES OF THE RIVER METRIC ON $\\\\mathbb{R}^2$\",\"authors\":\"N. Okičić, A. Rekic-Vukovic\",\"doi\":\"10.37418/amsj.12.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider some metrical and topological properties of the river metric $d^*$ in the plane $\\\\mathbb{R}^2^2$. We give the form of the metric segment and the set of all points that are equidistant from two points in $(\\\\rR^2,d^*)$. We also give the characterization of a compact sets in this space.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了平面$\mathbb{R}^2^2$中河流度量$d^*$的一些度量和拓扑性质。我们给出了度规线段的形式以及与$(\rR^2,d^*)$中两点等距的所有点的集合。我们还给出了该空间中紧集的刻划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SOME METRICAL AND TOPOLOGICAL PROPERTIES OF THE RIVER METRIC ON $\mathbb{R}^2$
In this paper we consider some metrical and topological properties of the river metric $d^*$ in the plane $\mathbb{R}^2^2$. We give the form of the metric segment and the set of all points that are equidistant from two points in $(\rR^2,d^*)$. We also give the characterization of a compact sets in this space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信