Yuechen Wu, S. Vorndran, Silvana Ayala Pelaez, J. Russo, R. Kostuk
{"title":"全息微尺度分光光伏系统的设计","authors":"Yuechen Wu, S. Vorndran, Silvana Ayala Pelaez, J. Russo, R. Kostuk","doi":"10.1117/12.2187073","DOIUrl":null,"url":null,"abstract":"Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a holographic micro-scale spectrum-splitting photovoltaic system\",\"authors\":\"Yuechen Wu, S. Vorndran, Silvana Ayala Pelaez, J. Russo, R. Kostuk\",\"doi\":\"10.1117/12.2187073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.\",\"PeriodicalId\":142821,\"journal\":{\"name\":\"SPIE Optics + Photonics for Sustainable Energy\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2187073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a holographic micro-scale spectrum-splitting photovoltaic system
Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.