{"title":"SS-ADMM:皮质-肌肉耦合的平稳稀疏格兰杰因果发现","authors":"Farwa Abbas, V. McClelland, Z. Cvetkovic, Wei Dai","doi":"10.1109/ICASSP49357.2023.10095111","DOIUrl":null,"url":null,"abstract":"Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"38 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SS-ADMM: Stationary and Sparse Granger Causal Discovery for Cortico-Muscular Coupling\",\"authors\":\"Farwa Abbas, V. McClelland, Z. Cvetkovic, Wei Dai\",\"doi\":\"10.1109/ICASSP49357.2023.10095111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"38 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10095111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SS-ADMM: Stationary and Sparse Granger Causal Discovery for Cortico-Muscular Coupling
Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.