SS-ADMM:皮质-肌肉耦合的平稳稀疏格兰杰因果发现

Farwa Abbas, V. McClelland, Z. Cvetkovic, Wei Dai
{"title":"SS-ADMM:皮质-肌肉耦合的平稳稀疏格兰杰因果发现","authors":"Farwa Abbas, V. McClelland, Z. Cvetkovic, Wei Dai","doi":"10.1109/ICASSP49357.2023.10095111","DOIUrl":null,"url":null,"abstract":"Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"38 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SS-ADMM: Stationary and Sparse Granger Causal Discovery for Cortico-Muscular Coupling\",\"authors\":\"Farwa Abbas, V. McClelland, Z. Cvetkovic, Wei Dai\",\"doi\":\"10.1109/ICASSP49357.2023.10095111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"38 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP49357.2023.10095111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮质-肌肉交流模式揭示了运动控制的重要信息。然而,推断同时活动肌肉的运动皮质脑电图(EEG)和表面肌电图(sEMG)之间的显著因果关系是具有挑战性的,因为与附加噪声和背景活动相比,涉及肌肉控制的相关过程相对较弱。本文提出了一种皮质-肌肉线性时不变通信识别框架,该框架通过在凸优化程序中施加稀疏性和平稳性条件来同时估计模型阶数及其参数。实验结果表明,我们提出的算法在计算速度和因果关系估计的模型识别方面优于现有的自回归模型估计技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SS-ADMM: Stationary and Sparse Granger Causal Discovery for Cortico-Muscular Coupling
Cortico-muscular communication patterns reveal important information about motor control. However, inferring significant causal relationships between motor cortex electroencephalogram (EEG) and surface electromyogram (sEMG) of concurrently active muscles is challenging since relevant processes involved in muscle control are relatively weak compared to additive noise and background activities. In this paper, a framework for identification of cortico-muscular linear time invariant communication is proposed that simultaneously estimates model order and its parameters by enforcing sparsity and stationarity conditions in a convex optimization program. The experimental results demonstrate that our proposed algorithm outperforms existing techniques for autoregressive model estimation, in terms of computational speed and model identification for causality estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信