基于相关性的图像分类与检索

Imran Ahmad, M. T. Ibrahim
{"title":"基于相关性的图像分类与检索","authors":"Imran Ahmad, M. T. Ibrahim","doi":"10.1109/CRV.2006.40","DOIUrl":null,"url":null,"abstract":"Image retrieval methods aim to retrieve relevant images from an image database that are similar to the query image. The ability to effectively retrieve non-alphanumeric data is a complex issue. The problem becomes even more difficult due to the high dimension of the variable space associated with the images. Image classification is a very active and promising research domain in the area of image management and retrieval. In this paper, we propose a new image classification and retrieval scheme that automatically selects the discriminating features. Our method consists of two phases: (i) classification of images on the basis of maximum cross correlation and (ii) retrieval of images from the database against a given query image. The proposed retrieval algorithm recursively searches similar images on the basis of their correlation against a given query image from a set of registered images in the database. The algorithm is very efficient, provided that the mean images of all of the classes are computed and available in advance. The proposed method classifies the images on the basis of maximum correlation so that the images with more similarities and, hence, exhibiting maximum correlation with each other are grouped in the same class and, are retrieved accordingly.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image Classification and Retrieval using Correlation\",\"authors\":\"Imran Ahmad, M. T. Ibrahim\",\"doi\":\"10.1109/CRV.2006.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image retrieval methods aim to retrieve relevant images from an image database that are similar to the query image. The ability to effectively retrieve non-alphanumeric data is a complex issue. The problem becomes even more difficult due to the high dimension of the variable space associated with the images. Image classification is a very active and promising research domain in the area of image management and retrieval. In this paper, we propose a new image classification and retrieval scheme that automatically selects the discriminating features. Our method consists of two phases: (i) classification of images on the basis of maximum cross correlation and (ii) retrieval of images from the database against a given query image. The proposed retrieval algorithm recursively searches similar images on the basis of their correlation against a given query image from a set of registered images in the database. The algorithm is very efficient, provided that the mean images of all of the classes are computed and available in advance. The proposed method classifies the images on the basis of maximum correlation so that the images with more similarities and, hence, exhibiting maximum correlation with each other are grouped in the same class and, are retrieved accordingly.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

图像检索方法的目的是从图像数据库中检索与查询图像相似的相关图像。有效检索非字母数字数据的能力是一个复杂的问题。由于与图像相关的可变空间的高维,这个问题变得更加困难。在图像管理和检索领域,图像分类是一个非常活跃和有前途的研究领域。本文提出了一种自动选择识别特征的图像分类检索方法。我们的方法包括两个阶段:(i)基于最大相互关联的图像分类和(ii)根据给定的查询图像从数据库中检索图像。本文提出的检索算法基于与数据库中一组注册图像之间的相关性,递归地搜索相似图像。该算法是非常有效的,前提是所有类别的平均图像都是预先计算出来的。该方法基于最大相关性对图像进行分类,将相似度较高且相互间相关性最大的图像归为一类,并进行检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Classification and Retrieval using Correlation
Image retrieval methods aim to retrieve relevant images from an image database that are similar to the query image. The ability to effectively retrieve non-alphanumeric data is a complex issue. The problem becomes even more difficult due to the high dimension of the variable space associated with the images. Image classification is a very active and promising research domain in the area of image management and retrieval. In this paper, we propose a new image classification and retrieval scheme that automatically selects the discriminating features. Our method consists of two phases: (i) classification of images on the basis of maximum cross correlation and (ii) retrieval of images from the database against a given query image. The proposed retrieval algorithm recursively searches similar images on the basis of their correlation against a given query image from a set of registered images in the database. The algorithm is very efficient, provided that the mean images of all of the classes are computed and available in advance. The proposed method classifies the images on the basis of maximum correlation so that the images with more similarities and, hence, exhibiting maximum correlation with each other are grouped in the same class and, are retrieved accordingly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信