Justin Cappos, Matt Hemmings, R. McGeer, Albert Rafetseder, Glenn Ricart
{"title":"EdgeNet:通过地方行动传播的全球云","authors":"Justin Cappos, Matt Hemmings, R. McGeer, Albert Rafetseder, Glenn Ricart","doi":"10.1109/SEC.2018.00045","DOIUrl":null,"url":null,"abstract":"EdgeNet has been informed by the advances of cloud computing and the successes of such distributed systems as PlanetLab, GENI, G-Lab, SAVI, and V-Node: a large number of small points-of-presence, designed for the deployment of highly distributed experiments and applications. EdgeNet differs from its predecessors in two significant areas: first, it is a software-only infrastructure, where each worker node is designed to run part-or full-time on existing hardware at the local site; and, second, it uses modern, industry-standard software both as the node agent and the control framework. The first innovation permits rapid and unlimited scaling: whereas GENI and PlanetLab required the installation and maintenance of dedicated hardware at each site, EdgeNet requires only a software download, and a node can be added to the EdgeNet infrastructure in 15 minutes. The second offers performance, maintenance, and training benefits; rather than maintaining bespoke kernels and control frameworks, and developing training materials on using the latter, we are able to ride the wave of open-source and industry development, and the plethora of industry and community tutorial materials developed for industry standard control frameworks. The result is a global Kubernetes cluster, where pods of Docker containers form the service instances at each point of presence.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"EdgeNet: A Global Cloud That Spreads by Local Action\",\"authors\":\"Justin Cappos, Matt Hemmings, R. McGeer, Albert Rafetseder, Glenn Ricart\",\"doi\":\"10.1109/SEC.2018.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EdgeNet has been informed by the advances of cloud computing and the successes of such distributed systems as PlanetLab, GENI, G-Lab, SAVI, and V-Node: a large number of small points-of-presence, designed for the deployment of highly distributed experiments and applications. EdgeNet differs from its predecessors in two significant areas: first, it is a software-only infrastructure, where each worker node is designed to run part-or full-time on existing hardware at the local site; and, second, it uses modern, industry-standard software both as the node agent and the control framework. The first innovation permits rapid and unlimited scaling: whereas GENI and PlanetLab required the installation and maintenance of dedicated hardware at each site, EdgeNet requires only a software download, and a node can be added to the EdgeNet infrastructure in 15 minutes. The second offers performance, maintenance, and training benefits; rather than maintaining bespoke kernels and control frameworks, and developing training materials on using the latter, we are able to ride the wave of open-source and industry development, and the plethora of industry and community tutorial materials developed for industry standard control frameworks. The result is a global Kubernetes cluster, where pods of Docker containers form the service instances at each point of presence.\",\"PeriodicalId\":376439,\"journal\":{\"name\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC.2018.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EdgeNet: A Global Cloud That Spreads by Local Action
EdgeNet has been informed by the advances of cloud computing and the successes of such distributed systems as PlanetLab, GENI, G-Lab, SAVI, and V-Node: a large number of small points-of-presence, designed for the deployment of highly distributed experiments and applications. EdgeNet differs from its predecessors in two significant areas: first, it is a software-only infrastructure, where each worker node is designed to run part-or full-time on existing hardware at the local site; and, second, it uses modern, industry-standard software both as the node agent and the control framework. The first innovation permits rapid and unlimited scaling: whereas GENI and PlanetLab required the installation and maintenance of dedicated hardware at each site, EdgeNet requires only a software download, and a node can be added to the EdgeNet infrastructure in 15 minutes. The second offers performance, maintenance, and training benefits; rather than maintaining bespoke kernels and control frameworks, and developing training materials on using the latter, we are able to ride the wave of open-source and industry development, and the plethora of industry and community tutorial materials developed for industry standard control frameworks. The result is a global Kubernetes cluster, where pods of Docker containers form the service instances at each point of presence.