时间序列降维的PIP改进及其指标结构

N. T. Son, D. T. Anh
{"title":"时间序列降维的PIP改进及其指标结构","authors":"N. T. Son, D. T. Anh","doi":"10.1109/KSE.2010.8","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new time series dimensionality reduction method, IPIP. This method takes full advantages of PIP (Perceptually Important Points) method, proposed by Chung et al., with some improvements in order that the new method can theoretically satisfy the lower bounding condition for time series dimensionality reduction methods. Furthermore, we can make IPIP index able by showing that a time series compressed by IPIP can be indexed with the support of a multidimensional index structure based on Skyline index. Our experiments show that our IPIP method with its appropriate index structure can perform better than to some previous schemes, namely PAA based on traditional R*- tree.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Improvement of PIP for Time Series Dimensionality Reduction and Its Index Structure\",\"authors\":\"N. T. Son, D. T. Anh\",\"doi\":\"10.1109/KSE.2010.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new time series dimensionality reduction method, IPIP. This method takes full advantages of PIP (Perceptually Important Points) method, proposed by Chung et al., with some improvements in order that the new method can theoretically satisfy the lower bounding condition for time series dimensionality reduction methods. Furthermore, we can make IPIP index able by showing that a time series compressed by IPIP can be indexed with the support of a multidimensional index structure based on Skyline index. Our experiments show that our IPIP method with its appropriate index structure can perform better than to some previous schemes, namely PAA based on traditional R*- tree.\",\"PeriodicalId\":158823,\"journal\":{\"name\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2010.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文介绍了一种新的时间序列降维方法——IPIP。该方法充分利用了Chung等人提出的PIP (perceptional Important Points)方法,并进行了一些改进,使得该方法在理论上能够满足时间序列降维方法的下边界条件。此外,通过展示IPIP压缩的时间序列可以在基于Skyline索引的多维索引结构的支持下进行索引,从而使IPIP索引成为可能。实验结果表明,采用适当的索引结构的IPIP方法比传统的基于R*-树的PAA方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improvement of PIP for Time Series Dimensionality Reduction and Its Index Structure
In this paper, we introduce a new time series dimensionality reduction method, IPIP. This method takes full advantages of PIP (Perceptually Important Points) method, proposed by Chung et al., with some improvements in order that the new method can theoretically satisfy the lower bounding condition for time series dimensionality reduction methods. Furthermore, we can make IPIP index able by showing that a time series compressed by IPIP can be indexed with the support of a multidimensional index structure based on Skyline index. Our experiments show that our IPIP method with its appropriate index structure can perform better than to some previous schemes, namely PAA based on traditional R*- tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信