Cleber Beretta Custodio, Yu Gu, José Portela González
{"title":"西班牙审计师持续经营评估的决策树工具","authors":"Cleber Beretta Custodio, Yu Gu, José Portela González","doi":"10.4192/1577-8517-v22_7","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic increased uncertainty about the financial future of many organizations, and regulators alerted auditors to be increasingly skeptical in assessing an entity’s ability to continue as a going concern. An auditor’s assessment of an entity’s ability to continue as a going concern is a matter of significant judgment. This paper proposes to use machine learning to construct a Decision Tree Automated Tool, based on both quantitative financial indicators (e.g., Z-scores) and qualitative factors (e.g., partners’ judgment and assessment of industry risk given the pandemic). Considering both quantitative and qualitative factors results in a model that provides additional audit evidence for auditors in their going-concern assessment. An auditing firm in Spain used the model as a supplemental guide, and the model’s suggested results were compared to auditors’ reports to evaluate its effectiveness and accuracy. The model’s predictions were significantly similar to the auditors’ assessments, indicating a high level of accuracy, and differences between the model’s proposed outcomes and auditors’ final conclusions were investigated. This paper also provides insights for regulators on both the use of machine-learning predictive models and additional factors to be considered in future going-concern assessment research.","PeriodicalId":404481,"journal":{"name":"The International Journal of Digital Accounting Research","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Tree Tool for Auditors’ Going Concern Assessment in Spain\",\"authors\":\"Cleber Beretta Custodio, Yu Gu, José Portela González\",\"doi\":\"10.4192/1577-8517-v22_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic increased uncertainty about the financial future of many organizations, and regulators alerted auditors to be increasingly skeptical in assessing an entity’s ability to continue as a going concern. An auditor’s assessment of an entity’s ability to continue as a going concern is a matter of significant judgment. This paper proposes to use machine learning to construct a Decision Tree Automated Tool, based on both quantitative financial indicators (e.g., Z-scores) and qualitative factors (e.g., partners’ judgment and assessment of industry risk given the pandemic). Considering both quantitative and qualitative factors results in a model that provides additional audit evidence for auditors in their going-concern assessment. An auditing firm in Spain used the model as a supplemental guide, and the model’s suggested results were compared to auditors’ reports to evaluate its effectiveness and accuracy. The model’s predictions were significantly similar to the auditors’ assessments, indicating a high level of accuracy, and differences between the model’s proposed outcomes and auditors’ final conclusions were investigated. This paper also provides insights for regulators on both the use of machine-learning predictive models and additional factors to be considered in future going-concern assessment research.\",\"PeriodicalId\":404481,\"journal\":{\"name\":\"The International Journal of Digital Accounting Research\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Digital Accounting Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4192/1577-8517-v22_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Digital Accounting Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4192/1577-8517-v22_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decision Tree Tool for Auditors’ Going Concern Assessment in Spain
The COVID-19 pandemic increased uncertainty about the financial future of many organizations, and regulators alerted auditors to be increasingly skeptical in assessing an entity’s ability to continue as a going concern. An auditor’s assessment of an entity’s ability to continue as a going concern is a matter of significant judgment. This paper proposes to use machine learning to construct a Decision Tree Automated Tool, based on both quantitative financial indicators (e.g., Z-scores) and qualitative factors (e.g., partners’ judgment and assessment of industry risk given the pandemic). Considering both quantitative and qualitative factors results in a model that provides additional audit evidence for auditors in their going-concern assessment. An auditing firm in Spain used the model as a supplemental guide, and the model’s suggested results were compared to auditors’ reports to evaluate its effectiveness and accuracy. The model’s predictions were significantly similar to the auditors’ assessments, indicating a high level of accuracy, and differences between the model’s proposed outcomes and auditors’ final conclusions were investigated. This paper also provides insights for regulators on both the use of machine-learning predictive models and additional factors to be considered in future going-concern assessment research.