让用户控制他们的推荐

F. M. Harper, F. Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang, L. Terveen
{"title":"让用户控制他们的推荐","authors":"F. M. Harper, F. Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang, L. Terveen","doi":"10.1145/2792838.2800179","DOIUrl":null,"url":null,"abstract":"The essence of a recommender system is that it can recommend items personalized to the preferences of an individual user. But typically users are given no explicit control over this personalization, and are instead left guessing about how their actions affect the resulting recommendations. We hypothesize that any recommender algorithm will better fit some users' expectations than others, leaving opportunities for improvement. To address this challenge, we study a recommender that puts some control in the hands of users. Specifically, we build and evaluate a system that incorporates user-tuned popularity and recency modifiers, allowing users to express concepts like \"show more popular items\". We find that users who are given these controls evaluate the resulting recommendations much more positively. Further, we find that users diverge in their preferred settings, confirming the importance of giving control to users.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Putting Users in Control of their Recommendations\",\"authors\":\"F. M. Harper, F. Xu, Harmanpreet Kaur, Kyle Condiff, Shuo Chang, L. Terveen\",\"doi\":\"10.1145/2792838.2800179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The essence of a recommender system is that it can recommend items personalized to the preferences of an individual user. But typically users are given no explicit control over this personalization, and are instead left guessing about how their actions affect the resulting recommendations. We hypothesize that any recommender algorithm will better fit some users' expectations than others, leaving opportunities for improvement. To address this challenge, we study a recommender that puts some control in the hands of users. Specifically, we build and evaluate a system that incorporates user-tuned popularity and recency modifiers, allowing users to express concepts like \\\"show more popular items\\\". We find that users who are given these controls evaluate the resulting recommendations much more positively. Further, we find that users diverge in their preferred settings, confirming the importance of giving control to users.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2800179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

推荐系统的本质是它可以根据个人用户的喜好推荐个性化的项目。但通常情况下,用户对这种个性化没有明确的控制权,而是让他们猜测自己的行为如何影响最终的推荐。我们假设任何推荐算法都会比其他算法更符合某些用户的期望,从而留下改进的机会。为了应对这一挑战,我们研究了一个将一些控制权交给用户的推荐器。具体来说,我们构建并评估了一个系统,该系统包含了用户可调的流行度和最近度修饰符,允许用户表达“显示更受欢迎的项目”等概念。我们发现,拥有这些控件的用户对结果推荐的评价要积极得多。此外,我们发现用户在他们的首选设置上存在分歧,这证实了将控制权交给用户的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Putting Users in Control of their Recommendations
The essence of a recommender system is that it can recommend items personalized to the preferences of an individual user. But typically users are given no explicit control over this personalization, and are instead left guessing about how their actions affect the resulting recommendations. We hypothesize that any recommender algorithm will better fit some users' expectations than others, leaving opportunities for improvement. To address this challenge, we study a recommender that puts some control in the hands of users. Specifically, we build and evaluate a system that incorporates user-tuned popularity and recency modifiers, allowing users to express concepts like "show more popular items". We find that users who are given these controls evaluate the resulting recommendations much more positively. Further, we find that users diverge in their preferred settings, confirming the importance of giving control to users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信