“平面”重言式难以分辨

Stefan S. Dantchev, Søren Riis
{"title":"“平面”重言式难以分辨","authors":"Stefan S. Dantchev, Søren Riis","doi":"10.1109/SFCS.2001.959896","DOIUrl":null,"url":null,"abstract":"We prove exponential lower bounds on the resolution proofs of some tautologies, based on rectangular grid graphs. More specifically, we show a 2/sup /spl Omega/(n)/ lower bound for any resolution proof of the mutilated chessboard problem on a 2n/spl times/2n chessboard as well as for the Tseitin tautology (G. Tseitin, 1968) based on the n/spl times/n rectangular grid graph. The former result answers a 35 year old conjecture by J. McCarthy (1964).","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"\\\"Planar\\\" tautologies hard for resolution\",\"authors\":\"Stefan S. Dantchev, Søren Riis\",\"doi\":\"10.1109/SFCS.2001.959896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove exponential lower bounds on the resolution proofs of some tautologies, based on rectangular grid graphs. More specifically, we show a 2/sup /spl Omega/(n)/ lower bound for any resolution proof of the mutilated chessboard problem on a 2n/spl times/2n chessboard as well as for the Tseitin tautology (G. Tseitin, 1968) based on the n/spl times/n rectangular grid graph. The former result answers a 35 year old conjecture by J. McCarthy (1964).\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在矩形网格图的基础上,我们证明了一些重言式的分辨率证明的指数下界。更具体地说,我们展示了一个2/sup /spl Omega/(n)/下界,适用于在2n/spl次/2n棋盘上残废棋盘问题的任何分辨率证明,以及基于n/spl次/n矩形网格图的tseittin重言式(G. tseittin, 1968)。前一个结果回答了J. McCarthy(1964) 35年前的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
"Planar" tautologies hard for resolution
We prove exponential lower bounds on the resolution proofs of some tautologies, based on rectangular grid graphs. More specifically, we show a 2/sup /spl Omega/(n)/ lower bound for any resolution proof of the mutilated chessboard problem on a 2n/spl times/2n chessboard as well as for the Tseitin tautology (G. Tseitin, 1968) based on the n/spl times/n rectangular grid graph. The former result answers a 35 year old conjecture by J. McCarthy (1964).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信