在线文本健康建议中的冲突检测:演示摘要

S. Preum, M. A. S. Mondol, Meiyi Ma, Hongning Wang, J. Stankovic
{"title":"在线文本健康建议中的冲突检测:演示摘要","authors":"S. Preum, M. A. S. Mondol, Meiyi Ma, Hongning Wang, J. Stankovic","doi":"10.1145/3055031.3055038","DOIUrl":null,"url":null,"abstract":"Textual health advice generated from different online sources (e.g., health apps and websites) can be conflicting. Conflicts can occur due to lexical features, (such as, negation, antonyms, or numerical mismatch) or can be conditioned upon time and/or physiological status. Detecting conflicts from textual health advice poses several challenges, including, large structural variation between text and hypothesis pairs, finding conceptual overlap between pairs of advice, and inference of the semantics of an advice (i.e., what to do, why, and how). In this demonstration, we present a semantic rule-based system to detect different types of conflicts in online textual health advice statements in a context-aware and interpretable manner.","PeriodicalId":206082,"journal":{"name":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conflict detection in online textual health advice: demo abstract\",\"authors\":\"S. Preum, M. A. S. Mondol, Meiyi Ma, Hongning Wang, J. Stankovic\",\"doi\":\"10.1145/3055031.3055038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textual health advice generated from different online sources (e.g., health apps and websites) can be conflicting. Conflicts can occur due to lexical features, (such as, negation, antonyms, or numerical mismatch) or can be conditioned upon time and/or physiological status. Detecting conflicts from textual health advice poses several challenges, including, large structural variation between text and hypothesis pairs, finding conceptual overlap between pairs of advice, and inference of the semantics of an advice (i.e., what to do, why, and how). In this demonstration, we present a semantic rule-based system to detect different types of conflicts in online textual health advice statements in a context-aware and interpretable manner.\",\"PeriodicalId\":206082,\"journal\":{\"name\":\"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055031.3055038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055031.3055038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自不同在线来源(例如,健康应用程序和网站)的文本健康建议可能相互矛盾。冲突可能由于词汇特征(如否定、反义词或数字不匹配)而发生,也可能取决于时间和/或生理状态。从文本健康建议中检测冲突提出了几个挑战,包括文本和假设对之间的巨大结构差异,发现建议对之间的概念重叠,以及建议的语义推断(即,做什么,为什么,以及如何做)。在这个演示中,我们提出了一个基于语义规则的系统,以上下文感知和可解释的方式检测在线文本健康建议语句中不同类型的冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conflict detection in online textual health advice: demo abstract
Textual health advice generated from different online sources (e.g., health apps and websites) can be conflicting. Conflicts can occur due to lexical features, (such as, negation, antonyms, or numerical mismatch) or can be conditioned upon time and/or physiological status. Detecting conflicts from textual health advice poses several challenges, including, large structural variation between text and hypothesis pairs, finding conceptual overlap between pairs of advice, and inference of the semantics of an advice (i.e., what to do, why, and how). In this demonstration, we present a semantic rule-based system to detect different types of conflicts in online textual health advice statements in a context-aware and interpretable manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信