NIR-VIS异构人脸识别的深度表征转移

Xiaoxiang Liu, Lingxiao Song, Xiang Wu, T. Tan
{"title":"NIR-VIS异构人脸识别的深度表征转移","authors":"Xiaoxiang Liu, Lingxiao Song, Xiang Wu, T. Tan","doi":"10.1109/ICB.2016.7550064","DOIUrl":null,"url":null,"abstract":"One task of heterogeneous face recognition is to match a near infrared (NIR) face image to a visible light (VIS) image. In practice, there are often a few pairwise NIR-VIS face images but it is easy to collect lots of VIS face images. Therefore, how to use these unpaired VIS images to improve the NIR-VIS recognition accuracy is an ongoing issue. This paper presents a deep TransfeR NIR-VIS heterogeneous facE recognition neTwork (TRIVET) for NIR-VIS face recognition. First, to utilize large numbers of unpaired VIS face images, we employ the deep convolutional neural network (CNN) with ordinal measures to learn discriminative models. The ordinal activation function (Max-Feature-Map) is used to select discriminative features and make the models robust and lighten. Second, we transfer these models to NIR-VIS domain by fine-tuning with two types of NIR-VIS triplet loss. The triplet loss not only reduces intra-class NIR-VIS variations but also augments the number of positive training sample pairs. It makes fine-tuning deep models on a small dataset possible. The proposed method achieves state-of-the-art recognition performance on the most challenging CASIA NIR-VIS 2.0 Face Database. It achieves a new record on rank-1 accuracy of 95.74% and verification rate of 91.03% at FAR=0.001. It cuts the error rate in comparison with the best accuracy [27] by 69%.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Transferring deep representation for NIR-VIS heterogeneous face recognition\",\"authors\":\"Xiaoxiang Liu, Lingxiao Song, Xiang Wu, T. Tan\",\"doi\":\"10.1109/ICB.2016.7550064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One task of heterogeneous face recognition is to match a near infrared (NIR) face image to a visible light (VIS) image. In practice, there are often a few pairwise NIR-VIS face images but it is easy to collect lots of VIS face images. Therefore, how to use these unpaired VIS images to improve the NIR-VIS recognition accuracy is an ongoing issue. This paper presents a deep TransfeR NIR-VIS heterogeneous facE recognition neTwork (TRIVET) for NIR-VIS face recognition. First, to utilize large numbers of unpaired VIS face images, we employ the deep convolutional neural network (CNN) with ordinal measures to learn discriminative models. The ordinal activation function (Max-Feature-Map) is used to select discriminative features and make the models robust and lighten. Second, we transfer these models to NIR-VIS domain by fine-tuning with two types of NIR-VIS triplet loss. The triplet loss not only reduces intra-class NIR-VIS variations but also augments the number of positive training sample pairs. It makes fine-tuning deep models on a small dataset possible. The proposed method achieves state-of-the-art recognition performance on the most challenging CASIA NIR-VIS 2.0 Face Database. It achieves a new record on rank-1 accuracy of 95.74% and verification rate of 91.03% at FAR=0.001. It cuts the error rate in comparison with the best accuracy [27] by 69%.\",\"PeriodicalId\":308715,\"journal\":{\"name\":\"2016 International Conference on Biometrics (ICB)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2016.7550064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

摘要

异构人脸识别的一个任务是将近红外人脸图像与可见光人脸图像进行匹配。在实际应用中,NIR-VIS的成对人脸图像通常很少,但很容易收集到大量的VIS人脸图像。因此,如何利用这些未配对的VIS图像来提高NIR-VIS识别的精度是一个有待解决的问题。本文提出了一种深度迁移NIR-VIS异构人脸识别网络(TRIVET),用于NIR-VIS人脸识别。首先,为了利用大量未配对的VIS人脸图像,我们采用带有序数度量的深度卷积神经网络(CNN)来学习判别模型。利用序激活函数(Max-Feature-Map)选择判别特征,使模型具有鲁棒性和轻量化。其次,通过两种NIR-VIS三重态损失的微调,将这些模型转移到NIR-VIS域。三元组的丢失不仅减少了类内NIR-VIS的变化,而且增加了正训练样本对的数量。它使得在小数据集上微调深度模型成为可能。该方法在最具挑战性的CASIA NIR-VIS 2.0人脸数据库上实现了最先进的识别性能。在FAR=0.001时,它在rank-1上的准确率达到95.74%,验证率达到91.03%。与最佳准确率[27]相比,它将错误率降低了69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transferring deep representation for NIR-VIS heterogeneous face recognition
One task of heterogeneous face recognition is to match a near infrared (NIR) face image to a visible light (VIS) image. In practice, there are often a few pairwise NIR-VIS face images but it is easy to collect lots of VIS face images. Therefore, how to use these unpaired VIS images to improve the NIR-VIS recognition accuracy is an ongoing issue. This paper presents a deep TransfeR NIR-VIS heterogeneous facE recognition neTwork (TRIVET) for NIR-VIS face recognition. First, to utilize large numbers of unpaired VIS face images, we employ the deep convolutional neural network (CNN) with ordinal measures to learn discriminative models. The ordinal activation function (Max-Feature-Map) is used to select discriminative features and make the models robust and lighten. Second, we transfer these models to NIR-VIS domain by fine-tuning with two types of NIR-VIS triplet loss. The triplet loss not only reduces intra-class NIR-VIS variations but also augments the number of positive training sample pairs. It makes fine-tuning deep models on a small dataset possible. The proposed method achieves state-of-the-art recognition performance on the most challenging CASIA NIR-VIS 2.0 Face Database. It achieves a new record on rank-1 accuracy of 95.74% and verification rate of 91.03% at FAR=0.001. It cuts the error rate in comparison with the best accuracy [27] by 69%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信