Alexander Baumstark, Philipp Götze, M. Jibril, K. Sattler
{"title":"持久内存上的即时图形查询恢复","authors":"Alexander Baumstark, Philipp Götze, M. Jibril, K. Sattler","doi":"10.1145/3465998.3466011","DOIUrl":null,"url":null,"abstract":"Persistent memory (PMem) - also known as non-volatile memory (NVM) - offers new opportunities not only for the design of data structures and system architectures but also for failure recovery in databases. However, instant recovery can mean not only to bring the system up as fast as possible but also to continue long-running queries which have been interrupted by a system failure. In this work, we discuss how PMem can be utilized to implement query recovery for analytical graph queries. Furthermore, we investigate the trade-off between the overhead of managing the query state in PMem at query runtime as well as the recovery and restart costs.","PeriodicalId":183683,"journal":{"name":"Proceedings of the 17th International Workshop on Data Management on New Hardware","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Instant Graph Query Recovery on Persistent Memory\",\"authors\":\"Alexander Baumstark, Philipp Götze, M. Jibril, K. Sattler\",\"doi\":\"10.1145/3465998.3466011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Persistent memory (PMem) - also known as non-volatile memory (NVM) - offers new opportunities not only for the design of data structures and system architectures but also for failure recovery in databases. However, instant recovery can mean not only to bring the system up as fast as possible but also to continue long-running queries which have been interrupted by a system failure. In this work, we discuss how PMem can be utilized to implement query recovery for analytical graph queries. Furthermore, we investigate the trade-off between the overhead of managing the query state in PMem at query runtime as well as the recovery and restart costs.\",\"PeriodicalId\":183683,\"journal\":{\"name\":\"Proceedings of the 17th International Workshop on Data Management on New Hardware\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Workshop on Data Management on New Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3465998.3466011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465998.3466011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Persistent memory (PMem) - also known as non-volatile memory (NVM) - offers new opportunities not only for the design of data structures and system architectures but also for failure recovery in databases. However, instant recovery can mean not only to bring the system up as fast as possible but also to continue long-running queries which have been interrupted by a system failure. In this work, we discuss how PMem can be utilized to implement query recovery for analytical graph queries. Furthermore, we investigate the trade-off between the overhead of managing the query state in PMem at query runtime as well as the recovery and restart costs.