基于时间分类的多变量时间序列预测

B. Liu, Jing Liu
{"title":"基于时间分类的多变量时间序列预测","authors":"B. Liu, Jing Liu","doi":"10.1109/ICDE.2002.994722","DOIUrl":null,"url":null,"abstract":"In this paper, we study a special form of time-series prediction, viz. the prediction of a dependent variable taking discrete values. Although in a real application this variable may take numeric values, the users are usually only interested in its value ranges, e.g. normal or abnormal, not its actual values. In this work, we extended two traditional classification techniques, namely the naive Bayesian classifier and decision trees, to suit temporal prediction. This results in two new techniques: a temporal naive Bayesian (T-NB) model and a temporal decision tree (T-DT). T-NB and T-DT have been tested on seven real-life data sets from an oil refinery. Experimental results show that they perform very accurate predictions.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multivariate time series prediction via temporal classification\",\"authors\":\"B. Liu, Jing Liu\",\"doi\":\"10.1109/ICDE.2002.994722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a special form of time-series prediction, viz. the prediction of a dependent variable taking discrete values. Although in a real application this variable may take numeric values, the users are usually only interested in its value ranges, e.g. normal or abnormal, not its actual values. In this work, we extended two traditional classification techniques, namely the naive Bayesian classifier and decision trees, to suit temporal prediction. This results in two new techniques: a temporal naive Bayesian (T-NB) model and a temporal decision tree (T-DT). T-NB and T-DT have been tested on seven real-life data sets from an oil refinery. Experimental results show that they perform very accurate predictions.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了时间序列预测的一种特殊形式,即取离散值的因变量的预测。虽然在实际应用中,这个变量可以取数值,但用户通常只对它的值范围感兴趣,例如正常或异常,而不是它的实际值。在这项工作中,我们扩展了两种传统的分类技术,即朴素贝叶斯分类器和决策树,以适应时间预测。这就产生了两种新技术:时间朴素贝叶斯(T-NB)模型和时间决策树(T-DT)。T-NB和T-DT已经在一家炼油厂的七个真实数据集上进行了测试。实验结果表明,它们的预测非常准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate time series prediction via temporal classification
In this paper, we study a special form of time-series prediction, viz. the prediction of a dependent variable taking discrete values. Although in a real application this variable may take numeric values, the users are usually only interested in its value ranges, e.g. normal or abnormal, not its actual values. In this work, we extended two traditional classification techniques, namely the naive Bayesian classifier and decision trees, to suit temporal prediction. This results in two new techniques: a temporal naive Bayesian (T-NB) model and a temporal decision tree (T-DT). T-NB and T-DT have been tested on seven real-life data sets from an oil refinery. Experimental results show that they perform very accurate predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信