基于双随机矩阵的图聚类的黎曼方法

Ahmed Douik, B. Hassibi
{"title":"基于双随机矩阵的图聚类的黎曼方法","authors":"Ahmed Douik, B. Hassibi","doi":"10.1109/SSP.2018.8450685","DOIUrl":null,"url":null,"abstract":"Convex optimization is a well-established area with applications in almost all fields. However, these convex methods can be rather slow and computationally intensive for high dimensional problems. For a particular class of problems, this paper considers a different approach, namely Riemannian optimization. The main idea is to view the constrained optimization problem as an unconstrained one over a restricted search space (the manifold). Riemannian optimization explicitly exploits the geometry of the problem and often reduces its dimension, thereby potentially allowing significant speedup as compared to conventional approaches. The paper introduces the doubly stochastic, the symmetric, and the definite multinomial manifolds which generalize the simplex. The method is applied to a convex and a non-convex graph-based clustering problem. Theoretical analysis and simulation results demonstrate the efficiency of the proposed method over the state of the art as it outperforms conventional generic and specialized solvers, especially in high dimensions.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Riemannian Approach for Graph-Based Clustering by Doubly Stochastic Matrices\",\"authors\":\"Ahmed Douik, B. Hassibi\",\"doi\":\"10.1109/SSP.2018.8450685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convex optimization is a well-established area with applications in almost all fields. However, these convex methods can be rather slow and computationally intensive for high dimensional problems. For a particular class of problems, this paper considers a different approach, namely Riemannian optimization. The main idea is to view the constrained optimization problem as an unconstrained one over a restricted search space (the manifold). Riemannian optimization explicitly exploits the geometry of the problem and often reduces its dimension, thereby potentially allowing significant speedup as compared to conventional approaches. The paper introduces the doubly stochastic, the symmetric, and the definite multinomial manifolds which generalize the simplex. The method is applied to a convex and a non-convex graph-based clustering problem. Theoretical analysis and simulation results demonstrate the efficiency of the proposed method over the state of the art as it outperforms conventional generic and specialized solvers, especially in high dimensions.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

凸优化是一个成熟的领域,几乎在所有领域都有应用。然而,对于高维问题,这些凸方法可能相当缓慢且计算量大。对于一类特殊的问题,本文考虑了一种不同的方法,即黎曼优化。其主要思想是将约束优化问题视为在受限搜索空间(流形)上的无约束优化问题。黎曼优化明确地利用了问题的几何特性,通常会降低其维度,因此与传统方法相比,可能会有显著的加速。介绍了推广单纯形的双随机流形、对称流形和定多项式流形。将该方法应用于基于凸和非凸图的聚类问题。理论分析和仿真结果表明,该方法优于传统的通用和专用求解器,特别是在高维问题上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Riemannian Approach for Graph-Based Clustering by Doubly Stochastic Matrices
Convex optimization is a well-established area with applications in almost all fields. However, these convex methods can be rather slow and computationally intensive for high dimensional problems. For a particular class of problems, this paper considers a different approach, namely Riemannian optimization. The main idea is to view the constrained optimization problem as an unconstrained one over a restricted search space (the manifold). Riemannian optimization explicitly exploits the geometry of the problem and often reduces its dimension, thereby potentially allowing significant speedup as compared to conventional approaches. The paper introduces the doubly stochastic, the symmetric, and the definite multinomial manifolds which generalize the simplex. The method is applied to a convex and a non-convex graph-based clustering problem. Theoretical analysis and simulation results demonstrate the efficiency of the proposed method over the state of the art as it outperforms conventional generic and specialized solvers, especially in high dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信