拟树上群动作的构造

K. Fujiwara
{"title":"拟树上群动作的构造","authors":"K. Fujiwara","doi":"10.1142/9789813272880_0089","DOIUrl":null,"url":null,"abstract":"A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and the outer automorphism groups of free groups. As an application, we show that mapping class groups act on finite products of Gromov-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping class groups have finite asymptotic dimension.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CONSTRUCTING GROUP ACTIONS ON QUASI-TREES\",\"authors\":\"K. Fujiwara\",\"doi\":\"10.1142/9789813272880_0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and the outer automorphism groups of free groups. As an application, we show that mapping class groups act on finite products of Gromov-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping class groups have finite asymptotic dimension.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

拟树是一种与树拟等距的测地线度量空间。给出了拟树上群的许多作用的一般构造。我们可以处理的群包括非初等双曲群、秩为1的CAT(0)群、映射类群和自由群的外部自同构群。作为应用,我们证明了映射类群作用于格罗莫夫-双曲空间的有限积上,使得轨道映射是准等距嵌入。这意味着映射类群具有有限的渐近维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONSTRUCTING GROUP ACTIONS ON QUASI-TREES
A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and the outer automorphism groups of free groups. As an application, we show that mapping class groups act on finite products of Gromov-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. It implies that mapping class groups have finite asymptotic dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信