精确时间协议的主故障

G. Gaderer, S. Rinaldi, N. Kero
{"title":"精确时间协议的主故障","authors":"G. Gaderer, S. Rinaldi, N. Kero","doi":"10.1109/ISPCS.2008.4659214","DOIUrl":null,"url":null,"abstract":"If all clocks within a distributed system share the same notion of time, the application domain can gain several advantages. Among those is the possibility to implement real-time behavior, accurate time stamping, and event detection. However, with the wide spread application of clock synchronization another topic has to be taken into consideration: the fault tolerance. The well known clock synchronization protocol IEEE1588 (precision time protocol, PTP), is based on a master/slave principle, which has one severe disadvantage. This disadvantage is the fact that the failure of a master automatically requires the re-election of a new master. The start of a master election based on timeout and thus takes a certain time span during which the clocks are not synchronized and thus running freely. Moreover the usage of a new master also requires new delay measurements, which prolong the time of uncertainty as well. This paper analyzes the results of such a master failure and proposes democratic master groups instead of hot-stand-by masters to overcome this problem by. It is shown by means of simulation that the proposed solution will not deteriorate the accuracy of the slave clocks in case of a master failure.","PeriodicalId":428276,"journal":{"name":"2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Master failures in the Precision Time Protocol\",\"authors\":\"G. Gaderer, S. Rinaldi, N. Kero\",\"doi\":\"10.1109/ISPCS.2008.4659214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If all clocks within a distributed system share the same notion of time, the application domain can gain several advantages. Among those is the possibility to implement real-time behavior, accurate time stamping, and event detection. However, with the wide spread application of clock synchronization another topic has to be taken into consideration: the fault tolerance. The well known clock synchronization protocol IEEE1588 (precision time protocol, PTP), is based on a master/slave principle, which has one severe disadvantage. This disadvantage is the fact that the failure of a master automatically requires the re-election of a new master. The start of a master election based on timeout and thus takes a certain time span during which the clocks are not synchronized and thus running freely. Moreover the usage of a new master also requires new delay measurements, which prolong the time of uncertainty as well. This paper analyzes the results of such a master failure and proposes democratic master groups instead of hot-stand-by masters to overcome this problem by. It is shown by means of simulation that the proposed solution will not deteriorate the accuracy of the slave clocks in case of a master failure.\",\"PeriodicalId\":428276,\"journal\":{\"name\":\"2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2008.4659214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2008.4659214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

如果分布式系统中的所有时钟共享相同的时间概念,那么应用程序域可以获得几个优势。其中包括实现实时行为、精确时间戳和事件检测的可能性。然而,随着时钟同步技术的广泛应用,必须考虑另一个问题:容错性。众所周知的时钟同步协议IEEE1588(精确时间协议,PTP)是基于主/从原则的,它有一个严重的缺点。这个缺点是,主服务器的故障自动要求重新选举新的主服务器。基于超时的主选举的开始,因此需要一定的时间跨度,在此期间时钟不同步,因此可以自由运行。此外,使用新的主控器还需要新的延迟测量,这也延长了不确定度的时间。本文分析了这种主体性失败的结果,并提出以民主主体性代替热备主体性来克服这一问题。仿真结果表明,在主时钟出现故障的情况下,该方案不会影响从时钟的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Master failures in the Precision Time Protocol
If all clocks within a distributed system share the same notion of time, the application domain can gain several advantages. Among those is the possibility to implement real-time behavior, accurate time stamping, and event detection. However, with the wide spread application of clock synchronization another topic has to be taken into consideration: the fault tolerance. The well known clock synchronization protocol IEEE1588 (precision time protocol, PTP), is based on a master/slave principle, which has one severe disadvantage. This disadvantage is the fact that the failure of a master automatically requires the re-election of a new master. The start of a master election based on timeout and thus takes a certain time span during which the clocks are not synchronized and thus running freely. Moreover the usage of a new master also requires new delay measurements, which prolong the time of uncertainty as well. This paper analyzes the results of such a master failure and proposes democratic master groups instead of hot-stand-by masters to overcome this problem by. It is shown by means of simulation that the proposed solution will not deteriorate the accuracy of the slave clocks in case of a master failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信