使用生物启发产品架构设计健壮的系统

Devesh Bhasin, D. Staack, D. McAdams
{"title":"使用生物启发产品架构设计健壮的系统","authors":"Devesh Bhasin, D. Staack, D. McAdams","doi":"10.1115/detc2021-68956","DOIUrl":null,"url":null,"abstract":"\n This work analyzes the role of bioinspired product architecture in facilitating the development of robust engineering systems. Existing studies on bioinspired product architecture largely focus on inspiring biology-like function-sharing in engineering design. This work shows that the guidelines for bioinspired product architecture, originally developed for bioinspiration of function-sharing, may induce robustness to random failures in engineered systems. To quantify such an improvement, this study utilizes Functional Modeling to derive modular equivalents of biological systems. The application of the bioinspired product architecture guidelines is then modeled as a transition from the modular product architecture of the modular equivalents to the actual product architecture of the biological systems. The robustness of the systems to random failures is analyzed after the application of each guideline by modeling the systems as directed networks. A singular robustness metric is then introduced to quantify the degradation in the expected functionality of systems upon increasing severity of random disruptions. Our results show that a system with bioinspired product architecture exhibits a gradual degradation in expected functionality upon increasing the number of failed modules as compared to an equivalent system with a one-to-one mapping of functions to modules. The findings are validated by designing and analyzing a COVID-19 breathalyzer as a case study.","PeriodicalId":261968,"journal":{"name":"Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Robust Systems Using Bioinspired Product Architecture\",\"authors\":\"Devesh Bhasin, D. Staack, D. McAdams\",\"doi\":\"10.1115/detc2021-68956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work analyzes the role of bioinspired product architecture in facilitating the development of robust engineering systems. Existing studies on bioinspired product architecture largely focus on inspiring biology-like function-sharing in engineering design. This work shows that the guidelines for bioinspired product architecture, originally developed for bioinspiration of function-sharing, may induce robustness to random failures in engineered systems. To quantify such an improvement, this study utilizes Functional Modeling to derive modular equivalents of biological systems. The application of the bioinspired product architecture guidelines is then modeled as a transition from the modular product architecture of the modular equivalents to the actual product architecture of the biological systems. The robustness of the systems to random failures is analyzed after the application of each guideline by modeling the systems as directed networks. A singular robustness metric is then introduced to quantify the degradation in the expected functionality of systems upon increasing severity of random disruptions. Our results show that a system with bioinspired product architecture exhibits a gradual degradation in expected functionality upon increasing the number of failed modules as compared to an equivalent system with a one-to-one mapping of functions to modules. The findings are validated by designing and analyzing a COVID-19 breathalyzer as a case study.\",\"PeriodicalId\":261968,\"journal\":{\"name\":\"Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-68956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: 33rd International Conference on Design Theory and Methodology (DTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-68956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作分析了生物启发产品架构在促进健壮工程系统开发中的作用。现有的仿生产品架构研究主要集中在工程设计中激发类似生物学的功能共享。这项工作表明,生物启发产品架构的指导方针,最初是为功能共享的生物启发而开发的,可以在工程系统中诱导对随机故障的鲁棒性。为了量化这种改进,本研究利用功能建模来推导生物系统的模块等效物。生物启发产品架构指南的应用随后被建模为从模块化等同物的模块化产品架构到生物系统的实际产品架构的过渡。通过将系统建模为有向网络,分析了各准则应用后系统对随机故障的鲁棒性。然后引入一个奇异的鲁棒性度量来量化随着随机中断的严重程度的增加系统预期功能的退化。我们的研究结果表明,与具有功能到模块的一对一映射的等效系统相比,具有生物启发产品架构的系统在增加失效模块数量时表现出预期功能的逐渐退化。通过设计和分析COVID-19呼气测醉器作为案例研究,验证了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Robust Systems Using Bioinspired Product Architecture
This work analyzes the role of bioinspired product architecture in facilitating the development of robust engineering systems. Existing studies on bioinspired product architecture largely focus on inspiring biology-like function-sharing in engineering design. This work shows that the guidelines for bioinspired product architecture, originally developed for bioinspiration of function-sharing, may induce robustness to random failures in engineered systems. To quantify such an improvement, this study utilizes Functional Modeling to derive modular equivalents of biological systems. The application of the bioinspired product architecture guidelines is then modeled as a transition from the modular product architecture of the modular equivalents to the actual product architecture of the biological systems. The robustness of the systems to random failures is analyzed after the application of each guideline by modeling the systems as directed networks. A singular robustness metric is then introduced to quantify the degradation in the expected functionality of systems upon increasing severity of random disruptions. Our results show that a system with bioinspired product architecture exhibits a gradual degradation in expected functionality upon increasing the number of failed modules as compared to an equivalent system with a one-to-one mapping of functions to modules. The findings are validated by designing and analyzing a COVID-19 breathalyzer as a case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信