进进空间上的补码

P. Scholze, Jared Weinstein
{"title":"进进空间上的补码","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.8","DOIUrl":null,"url":null,"abstract":"This chapter analyzes a collection of complements in the theory of adic spaces. These complements include adic morphisms, analytic adic spaces, and Cartier divisors. It turns out that there is a very general criterion for sheafyness. In general, uniformity does not guarantee sheafyness, but a strengthening of the uniformity condition does. Moreover, sheafyness, without any extra assumptions, implies other good properties. Ultimately, it is not immediately clear how to get a good theory of coherent sheaves on adic spaces. The chapter then considers Cartier divisors on adic spaces. The term closed Cartier divisor is meant to evoke a closed immersion of adic spaces.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complements on adic spaces\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvs32rc9.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter analyzes a collection of complements in the theory of adic spaces. These complements include adic morphisms, analytic adic spaces, and Cartier divisors. It turns out that there is a very general criterion for sheafyness. In general, uniformity does not guarantee sheafyness, but a strengthening of the uniformity condition does. Moreover, sheafyness, without any extra assumptions, implies other good properties. Ultimately, it is not immediately clear how to get a good theory of coherent sheaves on adic spaces. The chapter then considers Cartier divisors on adic spaces. The term closed Cartier divisor is meant to evoke a closed immersion of adic spaces.\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章分析了进进空间理论中的一组补语。这些补包括进射态射、解析进射空间和卡地亚除数。事实证明,有一个非常普遍的标准。一般来说,均匀性并不能保证厚度,但加强均匀性条件可以保证厚度。此外,在没有任何额外假设的情况下,厚重性意味着其他良好的性质。最终,如何在进射空间上得到一个好的相干束理论还不是很清楚。然后,本章考虑进进空间上的卡地亚除数。术语封闭卡地亚除数是为了唤起一个封闭的沉浸进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complements on adic spaces
This chapter analyzes a collection of complements in the theory of adic spaces. These complements include adic morphisms, analytic adic spaces, and Cartier divisors. It turns out that there is a very general criterion for sheafyness. In general, uniformity does not guarantee sheafyness, but a strengthening of the uniformity condition does. Moreover, sheafyness, without any extra assumptions, implies other good properties. Ultimately, it is not immediately clear how to get a good theory of coherent sheaves on adic spaces. The chapter then considers Cartier divisors on adic spaces. The term closed Cartier divisor is meant to evoke a closed immersion of adic spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信