一种估算扩张焦点的有效方法

Rui Huang, S. Ericson
{"title":"一种估算扩张焦点的有效方法","authors":"Rui Huang, S. Ericson","doi":"10.1109/ICIVC.2018.8492881","DOIUrl":null,"url":null,"abstract":"Detecting independent motion from a single camera is a difficult task in computer vision. It is because the captured image sequences are the combinations of the objects' movements and the camera's ego-motion. One major branch is to find the focus of expansion (FOE) instead as the goal. This is ideal for the situation commonly seen in UAV's camera system. In this case, the translation is dominant in camera's motion while the rotation is relatively small. To separate the ego motion and scene structure, many researchers used the directional flow as the theoretic basis and extracted its properties related to FOE. In this paper, we formulate finding FOE as an optimizing problem. The position of FOE has the minimal standard deviation for the directional flow in all directions, which is also subjected to the introduced constraint. The experiments show the proposed methods out-perform the previous method.","PeriodicalId":173981,"journal":{"name":"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Way to Estimate the Focus of Expansion\",\"authors\":\"Rui Huang, S. Ericson\",\"doi\":\"10.1109/ICIVC.2018.8492881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting independent motion from a single camera is a difficult task in computer vision. It is because the captured image sequences are the combinations of the objects' movements and the camera's ego-motion. One major branch is to find the focus of expansion (FOE) instead as the goal. This is ideal for the situation commonly seen in UAV's camera system. In this case, the translation is dominant in camera's motion while the rotation is relatively small. To separate the ego motion and scene structure, many researchers used the directional flow as the theoretic basis and extracted its properties related to FOE. In this paper, we formulate finding FOE as an optimizing problem. The position of FOE has the minimal standard deviation for the directional flow in all directions, which is also subjected to the introduced constraint. The experiments show the proposed methods out-perform the previous method.\",\"PeriodicalId\":173981,\"journal\":{\"name\":\"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC.2018.8492881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2018.8492881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在计算机视觉中,从单个摄像机中检测独立运动是一项困难的任务。这是因为捕捉到的图像序列是物体运动和相机自我运动的结合。一个主要分支是找到扩展的焦点(FOE)而不是目标。这对于无人机摄像机系统中常见的情况是理想的。在这种情况下,平移在摄像机的运动中占主导地位,而旋转相对较小。为了分离自我运动和场景结构,许多研究者将定向流作为理论基础,提取其与FOE相关的特性。在本文中,我们将寻找敌人的问题表述为一个优化问题。在所有方向的定向流中,FOE的位置具有最小的标准差,也受到所引入的约束。实验结果表明,本文提出的方法优于已有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Way to Estimate the Focus of Expansion
Detecting independent motion from a single camera is a difficult task in computer vision. It is because the captured image sequences are the combinations of the objects' movements and the camera's ego-motion. One major branch is to find the focus of expansion (FOE) instead as the goal. This is ideal for the situation commonly seen in UAV's camera system. In this case, the translation is dominant in camera's motion while the rotation is relatively small. To separate the ego motion and scene structure, many researchers used the directional flow as the theoretic basis and extracted its properties related to FOE. In this paper, we formulate finding FOE as an optimizing problem. The position of FOE has the minimal standard deviation for the directional flow in all directions, which is also subjected to the introduced constraint. The experiments show the proposed methods out-perform the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信