不确定数据的朴素贝叶斯分类

Jiangtao Ren, Sau-dan. Lee, Xianlu Chen, B. Kao, Reynold Cheng, D. Cheung
{"title":"不确定数据的朴素贝叶斯分类","authors":"Jiangtao Ren, Sau-dan. Lee, Xianlu Chen, B. Kao, Reynold Cheng, D. Cheung","doi":"10.1109/ICDM.2009.90","DOIUrl":null,"url":null,"abstract":"Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from measurement errors, data staleness, and repeated measurements, etc. With uncertainty, the value of each data item is represented by a probability distribution function (pdf). In this paper, we propose a novel naive Bayes classification algorithm for uncertain data with a pdf. Our key solution is to extend the class conditional probability estimation in the Bayes model to handle pdf’s. Extensive experiments on UCI datasets show that the accuracy of naive Bayes model can be improved by taking into account the uncertainty information.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Naive Bayes Classification of Uncertain Data\",\"authors\":\"Jiangtao Ren, Sau-dan. Lee, Xianlu Chen, B. Kao, Reynold Cheng, D. Cheung\",\"doi\":\"10.1109/ICDM.2009.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from measurement errors, data staleness, and repeated measurements, etc. With uncertainty, the value of each data item is represented by a probability distribution function (pdf). In this paper, we propose a novel naive Bayes classification algorithm for uncertain data with a pdf. Our key solution is to extend the class conditional probability estimation in the Bayes model to handle pdf’s. Extensive experiments on UCI datasets show that the accuracy of naive Bayes model can be improved by taking into account the uncertainty information.\",\"PeriodicalId\":247645,\"journal\":{\"name\":\"2009 Ninth IEEE International Conference on Data Mining\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 197

摘要

传统的机器学习算法假设数据是准确的或精确的。然而,在某些情况下,由于测量误差、数据过时和重复测量等引起的数据不确定性,这种假设可能不成立。对于不确定性,每个数据项的值用概率分布函数表示。在本文中,我们提出了一种新的具有pdf的不确定数据的朴素贝叶斯分类算法。我们的关键解决方案是扩展贝叶斯模型中的类条件概率估计来处理pdf。在UCI数据集上的大量实验表明,考虑不确定性信息可以提高朴素贝叶斯模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naive Bayes Classification of Uncertain Data
Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from measurement errors, data staleness, and repeated measurements, etc. With uncertainty, the value of each data item is represented by a probability distribution function (pdf). In this paper, we propose a novel naive Bayes classification algorithm for uncertain data with a pdf. Our key solution is to extend the class conditional probability estimation in the Bayes model to handle pdf’s. Extensive experiments on UCI datasets show that the accuracy of naive Bayes model can be improved by taking into account the uncertainty information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信