{"title":"基于二阶柔度的半刚性连接钢-混凝土组合框架非线性非弹性分析模型","authors":"C. Chiorean, M. Buru","doi":"10.4995/ASCCS2018.2018.7213","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient computer method for large deflection distributed plasticity analysis of 3D semi-rigid composite steel-concrete frameworks. A novel second-order inelastic flexibility-based element has been developed by combining the Maxwell-Mohr rule and the second-order force based functions for computation of the generalized displacements. The proposed model allows explicit and efficient modeling of the combined effects of nonlinear geometrical effects, gradual spread-of-plasticity, partial shear connection of composite beams, finite-size joints and joint flexibility by using only one 2-noded beam-column element per physical member. For composite beams, based on elasto-plastic cross-sectional analyses the model is able to take into account the effects of partial composite action between the concrete slab and the steel beam. At the cross-sectional level the proposed method addresses computational efficiency through the use of path integral approach to numerical integration of the cross-sectional nonlinear characteristics and residual stresses, enabling in this way the accurate geometrical specifications and precise modeling of cross-sections. The proposed nonlinear analysis formulation has been implemented in a general nonlinear static purpose computer program, NEFCAD. Several computational examples are given to validate the accuracy and efficiency of the proposed method.","PeriodicalId":320267,"journal":{"name":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-order flexibility-based model for nonlinear inelastic analysis of composite steel-concrete frameworks with partial composite action and semi-rigid connections\",\"authors\":\"C. Chiorean, M. Buru\",\"doi\":\"10.4995/ASCCS2018.2018.7213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient computer method for large deflection distributed plasticity analysis of 3D semi-rigid composite steel-concrete frameworks. A novel second-order inelastic flexibility-based element has been developed by combining the Maxwell-Mohr rule and the second-order force based functions for computation of the generalized displacements. The proposed model allows explicit and efficient modeling of the combined effects of nonlinear geometrical effects, gradual spread-of-plasticity, partial shear connection of composite beams, finite-size joints and joint flexibility by using only one 2-noded beam-column element per physical member. For composite beams, based on elasto-plastic cross-sectional analyses the model is able to take into account the effects of partial composite action between the concrete slab and the steel beam. At the cross-sectional level the proposed method addresses computational efficiency through the use of path integral approach to numerical integration of the cross-sectional nonlinear characteristics and residual stresses, enabling in this way the accurate geometrical specifications and precise modeling of cross-sections. The proposed nonlinear analysis formulation has been implemented in a general nonlinear static purpose computer program, NEFCAD. Several computational examples are given to validate the accuracy and efficiency of the proposed method.\",\"PeriodicalId\":320267,\"journal\":{\"name\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/ASCCS2018.2018.7213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 12th international conference on Advances in Steel-Concrete Composite Structures - ASCCS 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ASCCS2018.2018.7213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Second-order flexibility-based model for nonlinear inelastic analysis of composite steel-concrete frameworks with partial composite action and semi-rigid connections
This paper presents an efficient computer method for large deflection distributed plasticity analysis of 3D semi-rigid composite steel-concrete frameworks. A novel second-order inelastic flexibility-based element has been developed by combining the Maxwell-Mohr rule and the second-order force based functions for computation of the generalized displacements. The proposed model allows explicit and efficient modeling of the combined effects of nonlinear geometrical effects, gradual spread-of-plasticity, partial shear connection of composite beams, finite-size joints and joint flexibility by using only one 2-noded beam-column element per physical member. For composite beams, based on elasto-plastic cross-sectional analyses the model is able to take into account the effects of partial composite action between the concrete slab and the steel beam. At the cross-sectional level the proposed method addresses computational efficiency through the use of path integral approach to numerical integration of the cross-sectional nonlinear characteristics and residual stresses, enabling in this way the accurate geometrical specifications and precise modeling of cross-sections. The proposed nonlinear analysis formulation has been implemented in a general nonlinear static purpose computer program, NEFCAD. Several computational examples are given to validate the accuracy and efficiency of the proposed method.