{"title":"具有相同有效焦距的可见光和红外共光学系统的设计","authors":"Jeeyeon Yoon, H. Heo, Gmsil Kang","doi":"10.1117/12.2676605","DOIUrl":null,"url":null,"abstract":"In this paper, the results of designing a visible and infrared optical system with the same effective focal length are presented. The basic form is the three-mirror anastigmat (TMA) structure that can minimize major aberrations such as spherical, comma, and astigmatism and is an optical system that can secure a relatively wide field of view. The ray incident onto the optical system passes through three mirrors, is divided into infrared and visible bands by a beam splitter, and is incident on the focal plane array (FPA). Typically, in the case of a visible optics system, the stop of the optical system is placed near the primary mirror to be designed to have a minimum size. However, the stop is placed in front of the FPA to minimize thermal stray light owing to the internal temperature in the infrared channel.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a visible and infrared common optical system with the same effective focal length\",\"authors\":\"Jeeyeon Yoon, H. Heo, Gmsil Kang\",\"doi\":\"10.1117/12.2676605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the results of designing a visible and infrared optical system with the same effective focal length are presented. The basic form is the three-mirror anastigmat (TMA) structure that can minimize major aberrations such as spherical, comma, and astigmatism and is an optical system that can secure a relatively wide field of view. The ray incident onto the optical system passes through three mirrors, is divided into infrared and visible bands by a beam splitter, and is incident on the focal plane array (FPA). Typically, in the case of a visible optics system, the stop of the optical system is placed near the primary mirror to be designed to have a minimum size. However, the stop is placed in front of the FPA to minimize thermal stray light owing to the internal temperature in the infrared channel.\",\"PeriodicalId\":434863,\"journal\":{\"name\":\"Optical Engineering + Applications\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Engineering + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2676605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2676605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a visible and infrared common optical system with the same effective focal length
In this paper, the results of designing a visible and infrared optical system with the same effective focal length are presented. The basic form is the three-mirror anastigmat (TMA) structure that can minimize major aberrations such as spherical, comma, and astigmatism and is an optical system that can secure a relatively wide field of view. The ray incident onto the optical system passes through three mirrors, is divided into infrared and visible bands by a beam splitter, and is incident on the focal plane array (FPA). Typically, in the case of a visible optics system, the stop of the optical system is placed near the primary mirror to be designed to have a minimum size. However, the stop is placed in front of the FPA to minimize thermal stray light owing to the internal temperature in the infrared channel.