不稳定混合参数系统的Dirichlet边界镇定

H. Sano
{"title":"不稳定混合参数系统的Dirichlet边界镇定","authors":"H. Sano","doi":"10.1109/MCSI.2014.14","DOIUrl":null,"url":null,"abstract":"In this paper, we study the finite-dimensional stabilization problem of the cascade consisting of the one-dimensional transport-diffusion process and an unstable Ordinary Differential Equation (ODE) plant, where the ODE plant is connected with the transport-diffusion process through a filter. The input to the whole system is only Dirichlet boundary input to the transport diffusion process, and the outputs are the Dirichlet data at the boundary of process domain and the output from the ODE plant. In this paper, we use the latest method and show that the one-dimensional transport-diffusion process with such input and output can be formulated as a system with Aγ-bounded output operator and direct feed through term. It is shown that, under the assumption that the ODE plant is controllable and observable, the finite-dimensional model of the whole system becomes controllable and observable, when the filter mentioned above is a Residual Mode Filter (RMF). This fact enables us to construct a finite-dimensional stabilizing controller by using an RMF approach.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet Boundary Stabilization of Unstable Mixed Parameter Systems\",\"authors\":\"H. Sano\",\"doi\":\"10.1109/MCSI.2014.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the finite-dimensional stabilization problem of the cascade consisting of the one-dimensional transport-diffusion process and an unstable Ordinary Differential Equation (ODE) plant, where the ODE plant is connected with the transport-diffusion process through a filter. The input to the whole system is only Dirichlet boundary input to the transport diffusion process, and the outputs are the Dirichlet data at the boundary of process domain and the output from the ODE plant. In this paper, we use the latest method and show that the one-dimensional transport-diffusion process with such input and output can be formulated as a system with Aγ-bounded output operator and direct feed through term. It is shown that, under the assumption that the ODE plant is controllable and observable, the finite-dimensional model of the whole system becomes controllable and observable, when the filter mentioned above is a Residual Mode Filter (RMF). This fact enables us to construct a finite-dimensional stabilizing controller by using an RMF approach.\",\"PeriodicalId\":202841,\"journal\":{\"name\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Mathematics and Computers in Sciences and in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSI.2014.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由一维输运扩散过程和不稳定常微分方程(ODE)对象组成的级联的有限维镇定问题,其中ODE对象通过滤波器与输运扩散过程相连接。整个系统的输入仅为输运扩散过程的狄利克雷边界输入,输出为过程域边界处的狄利克雷数据和ODE装置的输出。本文用最新的方法证明了具有这种输入和输出的一维输运扩散过程可以被表述为具有a γ-有界输出算子和直接馈入项的系统。结果表明,在假设ODE对象可控且可观测的情况下,当上述滤波器为残差模态滤波器(RMF)时,整个系统的有限维模型变为可控且可观测。这一事实使我们能够使用RMF方法构造有限维稳定控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet Boundary Stabilization of Unstable Mixed Parameter Systems
In this paper, we study the finite-dimensional stabilization problem of the cascade consisting of the one-dimensional transport-diffusion process and an unstable Ordinary Differential Equation (ODE) plant, where the ODE plant is connected with the transport-diffusion process through a filter. The input to the whole system is only Dirichlet boundary input to the transport diffusion process, and the outputs are the Dirichlet data at the boundary of process domain and the output from the ODE plant. In this paper, we use the latest method and show that the one-dimensional transport-diffusion process with such input and output can be formulated as a system with Aγ-bounded output operator and direct feed through term. It is shown that, under the assumption that the ODE plant is controllable and observable, the finite-dimensional model of the whole system becomes controllable and observable, when the filter mentioned above is a Residual Mode Filter (RMF). This fact enables us to construct a finite-dimensional stabilizing controller by using an RMF approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信