有界角最大似然不完全译码分组码的错误概率界

S. Dolinar, K. Andrews, F. Pollara, D. Divsalar
{"title":"有界角最大似然不完全译码分组码的错误概率界","authors":"S. Dolinar, K. Andrews, F. Pollara, D. Divsalar","doi":"10.1109/ISITA.2008.4895487","DOIUrl":null,"url":null,"abstract":"Recently, Dolinar et al. obtained extremely tight bounds on the probabilities of decoding error and undetected error for block codes using bounded-angle maximum-likelihood (BA-ML) incomplete decoding. Unfortunately, these bounds are complex and difficult to compute for large block sizes. In this paper we obtain simple exponential upper bounds on both the word error probability and the undetected error probability of block codes using BA-ML decoding.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bounds on error probability of block codes with bounded-angle maximum-likelihood incomplete decoding\",\"authors\":\"S. Dolinar, K. Andrews, F. Pollara, D. Divsalar\",\"doi\":\"10.1109/ISITA.2008.4895487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Dolinar et al. obtained extremely tight bounds on the probabilities of decoding error and undetected error for block codes using bounded-angle maximum-likelihood (BA-ML) incomplete decoding. Unfortunately, these bounds are complex and difficult to compute for large block sizes. In this paper we obtain simple exponential upper bounds on both the word error probability and the undetected error probability of block codes using BA-ML decoding.\",\"PeriodicalId\":338675,\"journal\":{\"name\":\"2008 International Symposium on Information Theory and Its Applications\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITA.2008.4895487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近,Dolinar等人利用有界角最大似然(BA-ML)不完全译码获得了分组码的译码错误和未检测错误概率的极紧界。不幸的是,这些边界是复杂的,很难计算大块大小。本文利用BA-ML译码,得到了分组码的单词错误概率和未检测到的错误概率的简单指数上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on error probability of block codes with bounded-angle maximum-likelihood incomplete decoding
Recently, Dolinar et al. obtained extremely tight bounds on the probabilities of decoding error and undetected error for block codes using bounded-angle maximum-likelihood (BA-ML) incomplete decoding. Unfortunately, these bounds are complex and difficult to compute for large block sizes. In this paper we obtain simple exponential upper bounds on both the word error probability and the undetected error probability of block codes using BA-ML decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信