面向对象技术在短期负荷预测神经网络设计中的实际应用

L. L. Lai, A.G. Sichanie, N. Rajkumar, E. Styvaktakis, M. Sforna, M. Caciotta
{"title":"面向对象技术在短期负荷预测神经网络设计中的实际应用","authors":"L. L. Lai, A.G. Sichanie, N. Rajkumar, E. Styvaktakis, M. Sforna, M. Caciotta","doi":"10.1109/EMPD.1998.702746","DOIUrl":null,"url":null,"abstract":"This paper illustrates the use of object oriented programming (OOP) techniques for the design of neural networks (NNs) for short-term load forecasting. A load forecasting model has been developed using a multilayer perceptron NN with an appropriately modified backpropagation learning algorithm. The model produces a simultaneous forecast of the load in the 24 hours of the forecast day concerned. The technique has been tested on data provided by the Italian Power Company ENEL and the promising results obtained through the application of OOPNN-based approach show the effectiveness of this new approach.","PeriodicalId":434526,"journal":{"name":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Practical application of object oriented techniques to designing neural networks for short-term electric load forecasting\",\"authors\":\"L. L. Lai, A.G. Sichanie, N. Rajkumar, E. Styvaktakis, M. Sforna, M. Caciotta\",\"doi\":\"10.1109/EMPD.1998.702746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the use of object oriented programming (OOP) techniques for the design of neural networks (NNs) for short-term load forecasting. A load forecasting model has been developed using a multilayer perceptron NN with an appropriately modified backpropagation learning algorithm. The model produces a simultaneous forecast of the load in the 24 hours of the forecast day concerned. The technique has been tested on data provided by the Italian Power Company ENEL and the promising results obtained through the application of OOPNN-based approach show the effectiveness of this new approach.\",\"PeriodicalId\":434526,\"journal\":{\"name\":\"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMPD.1998.702746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1998.702746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文阐述了使用面向对象编程(OOP)技术设计用于短期负荷预测的神经网络(nn)。利用多层感知器神经网络和适当改进的反向传播学习算法建立了负荷预测模型。该模型同时预测有关预测日24小时内的负荷。该技术已在意大利电力公司ENEL提供的数据上进行了测试,通过应用基于oopnn的方法获得了令人满意的结果,表明了这种新方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical application of object oriented techniques to designing neural networks for short-term electric load forecasting
This paper illustrates the use of object oriented programming (OOP) techniques for the design of neural networks (NNs) for short-term load forecasting. A load forecasting model has been developed using a multilayer perceptron NN with an appropriately modified backpropagation learning algorithm. The model produces a simultaneous forecast of the load in the 24 hours of the forecast day concerned. The technique has been tested on data provided by the Italian Power Company ENEL and the promising results obtained through the application of OOPNN-based approach show the effectiveness of this new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信