基于迭代学习框架的手工装配任务适应性研究

Nejc Likar, B. Nemec, L. Žlajpah, Shingo Ando, A. Ude
{"title":"基于迭代学习框架的手工装配任务适应性研究","authors":"Nejc Likar, B. Nemec, L. Žlajpah, Shingo Ando, A. Ude","doi":"10.1109/HUMANOIDS.2015.7363457","DOIUrl":null,"url":null,"abstract":"The paper deals with the adaptation of bimanual assembly tasks. First, the desired policy is shown by human demonstration using kinesthetic guidance, where both trajectories and interaction forces are captured. Captured entities are portioned to absolute and relative coordinates. During the execution, small discrepancies in object geometry as well as the influence of an imperfect control can result in large contact forces. Force control can diminish the above mentioned problems only to some extent. Therefore, we propose a framework that iteratively modifies the original demonstrated trajectory in order to increase the performance of the typical assembly tasks. The approach is validated on bimanual peg in a hole task using two KUKA LWR robots.","PeriodicalId":417686,"journal":{"name":"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Adaptation of bimanual assembly tasks using iterative learning framework\",\"authors\":\"Nejc Likar, B. Nemec, L. Žlajpah, Shingo Ando, A. Ude\",\"doi\":\"10.1109/HUMANOIDS.2015.7363457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with the adaptation of bimanual assembly tasks. First, the desired policy is shown by human demonstration using kinesthetic guidance, where both trajectories and interaction forces are captured. Captured entities are portioned to absolute and relative coordinates. During the execution, small discrepancies in object geometry as well as the influence of an imperfect control can result in large contact forces. Force control can diminish the above mentioned problems only to some extent. Therefore, we propose a framework that iteratively modifies the original demonstrated trajectory in order to increase the performance of the typical assembly tasks. The approach is validated on bimanual peg in a hole task using two KUKA LWR robots.\",\"PeriodicalId\":417686,\"journal\":{\"name\":\"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2015.7363457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2015.7363457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了手工装配任务的自适应问题。首先,通过使用动觉引导的人类演示来显示期望的策略,其中轨迹和相互作用力都被捕获。捕获的实体被划分为绝对坐标和相对坐标。在执行过程中,物体几何形状的微小差异以及不完美控制的影响都可能导致较大的接触力。力控制只能在一定程度上缓解上述问题。因此,我们提出了一个迭代修改原始演示轨迹的框架,以提高典型装配任务的性能。该方法在两个KUKA LWR机器人的手工钉孔任务中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation of bimanual assembly tasks using iterative learning framework
The paper deals with the adaptation of bimanual assembly tasks. First, the desired policy is shown by human demonstration using kinesthetic guidance, where both trajectories and interaction forces are captured. Captured entities are portioned to absolute and relative coordinates. During the execution, small discrepancies in object geometry as well as the influence of an imperfect control can result in large contact forces. Force control can diminish the above mentioned problems only to some extent. Therefore, we propose a framework that iteratively modifies the original demonstrated trajectory in order to increase the performance of the typical assembly tasks. The approach is validated on bimanual peg in a hole task using two KUKA LWR robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信