面向漫画的语音文本识别

Christophe Rigaud, S. Pal, J. Burie, J. Ogier
{"title":"面向漫画的语音文本识别","authors":"Christophe Rigaud, S. Pal, J. Burie, J. Ogier","doi":"10.1145/3011549.3011557","DOIUrl":null,"url":null,"abstract":"Speech text in comic books is placed and written in a particular manner by the letterers which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of generic versus specifically trained OCR systems for typewritten and handwritten text lines from French comic books. This work is evaluated over a subset of public (eBDtheque) and private (Sequencity) datasets. We demonstrate that generic OCR systems perform best on typewritten-like and lowercase fonts while specifically trained OCR can be very powerful on skewed, uppercase and even cursive fonts.","PeriodicalId":319382,"journal":{"name":"Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Toward speech text recognition for comic books\",\"authors\":\"Christophe Rigaud, S. Pal, J. Burie, J. Ogier\",\"doi\":\"10.1145/3011549.3011557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech text in comic books is placed and written in a particular manner by the letterers which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of generic versus specifically trained OCR systems for typewritten and handwritten text lines from French comic books. This work is evaluated over a subset of public (eBDtheque) and private (Sequencity) datasets. We demonstrate that generic OCR systems perform best on typewritten-like and lowercase fonts while specifically trained OCR can be very powerful on skewed, uppercase and even cursive fonts.\",\"PeriodicalId\":319382,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3011549.3011557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on coMics ANalysis, Processing and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3011549.3011557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

漫画书中的语音文本是由字母以特定的方式放置和书写的,这给文本识别带来了不同寻常的挑战。我们首先详细介绍这些挑战,并提出解决这些挑战的不同方法。我们比较了通用和专门训练的OCR系统对法语漫画书中打字和手写文本行的性能。这项工作是在公共(eBDtheque)和私有(sequence)数据集的子集上进行评估的。我们证明了通用OCR系统在类打字字体和小写字体上表现最好,而经过专门训练的OCR在歪斜字体、大写字体甚至草书字体上表现非常强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward speech text recognition for comic books
Speech text in comic books is placed and written in a particular manner by the letterers which raises unusual challenges for text recognition. We first detail these challenges and present different approaches to solve them. We compare the performances of generic versus specifically trained OCR systems for typewritten and handwritten text lines from French comic books. This work is evaluated over a subset of public (eBDtheque) and private (Sequencity) datasets. We demonstrate that generic OCR systems perform best on typewritten-like and lowercase fonts while specifically trained OCR can be very powerful on skewed, uppercase and even cursive fonts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信