J. Adam Jones, J. Edward Swan, Gurjot Singh, E. Kolstad, Stephen R. Ellis
{"title":"虚拟现实、增强现实和运动视差对自我中心深度感知的影响","authors":"J. Adam Jones, J. Edward Swan, Gurjot Singh, E. Kolstad, Stephen R. Ellis","doi":"10.1145/1394281.1394283","DOIUrl":null,"url":null,"abstract":"A large number of previous studies have shown that egocentric depth perception tends to be underestimated in virtual reality (VR) - objects appear smaller and farther away than they should. Various theories as to why this might occur have been investigated, but to date the cause is not fully understood. A much smaller number of studies have investigated how depth perception operates in augmented reality (AR), and some of these studies have also indicated a similar underestimation effect. In this paper we report an experiment that further investigates these effects. The experiment compared VR and AR conditions to two real-world control conditions, and studied the effect of motion parallax across all conditions. Our combined VR and AR head-mounted display (HMD) allowed us to develop very careful calibration procedures based on real-world calibration widgets, which cannot be replicated with VR-only HMDs. To our knowledge, this is the first study to directly compare VR and AR conditions as part of the same experiment.","PeriodicalId":173744,"journal":{"name":"2008 IEEE Virtual Reality Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"199","resultStr":"{\"title\":\"The Effects of Virtual Reality, Augmented Reality, and Motion Parallax on Egocentric Depth Perception\",\"authors\":\"J. Adam Jones, J. Edward Swan, Gurjot Singh, E. Kolstad, Stephen R. Ellis\",\"doi\":\"10.1145/1394281.1394283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large number of previous studies have shown that egocentric depth perception tends to be underestimated in virtual reality (VR) - objects appear smaller and farther away than they should. Various theories as to why this might occur have been investigated, but to date the cause is not fully understood. A much smaller number of studies have investigated how depth perception operates in augmented reality (AR), and some of these studies have also indicated a similar underestimation effect. In this paper we report an experiment that further investigates these effects. The experiment compared VR and AR conditions to two real-world control conditions, and studied the effect of motion parallax across all conditions. Our combined VR and AR head-mounted display (HMD) allowed us to develop very careful calibration procedures based on real-world calibration widgets, which cannot be replicated with VR-only HMDs. To our knowledge, this is the first study to directly compare VR and AR conditions as part of the same experiment.\",\"PeriodicalId\":173744,\"journal\":{\"name\":\"2008 IEEE Virtual Reality Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"199\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Virtual Reality Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1394281.1394283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Virtual Reality Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1394281.1394283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effects of Virtual Reality, Augmented Reality, and Motion Parallax on Egocentric Depth Perception
A large number of previous studies have shown that egocentric depth perception tends to be underestimated in virtual reality (VR) - objects appear smaller and farther away than they should. Various theories as to why this might occur have been investigated, but to date the cause is not fully understood. A much smaller number of studies have investigated how depth perception operates in augmented reality (AR), and some of these studies have also indicated a similar underestimation effect. In this paper we report an experiment that further investigates these effects. The experiment compared VR and AR conditions to two real-world control conditions, and studied the effect of motion parallax across all conditions. Our combined VR and AR head-mounted display (HMD) allowed us to develop very careful calibration procedures based on real-world calibration widgets, which cannot be replicated with VR-only HMDs. To our knowledge, this is the first study to directly compare VR and AR conditions as part of the same experiment.