闭式压模过程中模型力预测的精度

Z. Keran, Živko Kondić, P. Piljek, B. Runje
{"title":"闭式压模过程中模型力预测的精度","authors":"Z. Keran, Živko Kondić, P. Piljek, B. Runje","doi":"10.5545/SV-JME.2017.5103","DOIUrl":null,"url":null,"abstract":"In micro-forming processes, such as coining, the microstructure of the material and dimension scale of the coined geometry can have a substantial influence on the mechanism of material deformation. The influence of the grain size on the coining force and closed die filling is investigated experimentally, and a mathematical model for result prediction has been created according to the obtained experimental results. The material of the billet is 99.5 % aluminium, and the die geometry is relatively complex. The presented mathematical model takes into account the influence of size effect on the material flow curve through die cavity geometry and estimates the final coining force and corresponding associated displacement of the tool. This enables a controlled influence of the grain size of the specimen material on forming force and tool displacement in the coining process and a reliable prediction of the final coining force and related tool displacement associated with a completely filled die cavity. To determine the accuracy of model force prediction, the experimental and modelled data were statistically analysed and graphically presented.","PeriodicalId":237575,"journal":{"name":"Strojniški vestnik","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accuracy of Model Force Prediction in Closed Die Coining Process\",\"authors\":\"Z. Keran, Živko Kondić, P. Piljek, B. Runje\",\"doi\":\"10.5545/SV-JME.2017.5103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In micro-forming processes, such as coining, the microstructure of the material and dimension scale of the coined geometry can have a substantial influence on the mechanism of material deformation. The influence of the grain size on the coining force and closed die filling is investigated experimentally, and a mathematical model for result prediction has been created according to the obtained experimental results. The material of the billet is 99.5 % aluminium, and the die geometry is relatively complex. The presented mathematical model takes into account the influence of size effect on the material flow curve through die cavity geometry and estimates the final coining force and corresponding associated displacement of the tool. This enables a controlled influence of the grain size of the specimen material on forming force and tool displacement in the coining process and a reliable prediction of the final coining force and related tool displacement associated with a completely filled die cavity. To determine the accuracy of model force prediction, the experimental and modelled data were statistically analysed and graphically presented.\",\"PeriodicalId\":237575,\"journal\":{\"name\":\"Strojniški vestnik\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/SV-JME.2017.5103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/SV-JME.2017.5103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在压模等微成形过程中,材料的微观组织和成形几何形状的尺寸尺度对材料的变形机理有很大的影响。实验研究了晶粒尺寸对压紧力和闭模充填的影响,并根据实验结果建立了结果预测的数学模型。坯料的材料为99.5%的铝,模具几何形状相对复杂。该数学模型通过模腔几何形状考虑了尺寸效应对物料流动曲线的影响,并估计了最终的压紧力和相应的刀具相关位移。这样就可以控制试样材料的晶粒尺寸对压模过程中的成形力和刀具位移的影响,并可靠地预测最终的压模力和与完全填充模腔相关的刀具位移。为了确定模型力预测的准确性,对实验数据和模型数据进行了统计分析和图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy of Model Force Prediction in Closed Die Coining Process
In micro-forming processes, such as coining, the microstructure of the material and dimension scale of the coined geometry can have a substantial influence on the mechanism of material deformation. The influence of the grain size on the coining force and closed die filling is investigated experimentally, and a mathematical model for result prediction has been created according to the obtained experimental results. The material of the billet is 99.5 % aluminium, and the die geometry is relatively complex. The presented mathematical model takes into account the influence of size effect on the material flow curve through die cavity geometry and estimates the final coining force and corresponding associated displacement of the tool. This enables a controlled influence of the grain size of the specimen material on forming force and tool displacement in the coining process and a reliable prediction of the final coining force and related tool displacement associated with a completely filled die cavity. To determine the accuracy of model force prediction, the experimental and modelled data were statistically analysed and graphically presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信